Zobrazeno 1 - 10
of 122
pro vyhledávání: '"Georg Nowak"'
Autor:
Manfred Kühleitner, Norbert Brunner, Werner-Georg Nowak, Katharina Renner-Martin, Klaus Scheicher
Publikováno v:
BMC Cancer, Vol 19, Iss 1, Pp 1-11 (2019)
Abstract Background Longitudinal studies of tumor volume have used certain named mathematical growth models. The Bertalanffy-Pütter differential equation unifies them: It uses five parameters, amongst them two exponents related to tumor metabolism a
Externí odkaz:
https://doaj.org/article/1062ddeaceff427b979015bcc36d5f71
Autor:
Norbert Brunner, Manfred Kühleitner, Werner Georg Nowak, Katharina Renner-Martin, Klaus Scheicher
Publikováno v:
PLoS ONE, Vol 14, Iss 10, p e0224168 (2019)
Quantitative studies of the growth of dinosaurs have made comparisons with modern animals possible. Therefore, it is meaningful to ask, if extinct dinosaurs grew faster than modern animals, e.g. birds (modern dinosaurs) and reptiles. However, past st
Externí odkaz:
https://doaj.org/article/2b5b28006e9840448002341c4ffba5ff
Autor:
Katharina Renner-Martin, Norbert Brunner, Manfred Kühleitner, Werner-Georg Nowak, Klaus Scheicher
Publikováno v:
PeerJ, Vol 6, p e5973 (2018)
The Bertalanffy–Pütter growth model describes mass m at age t by means of the differential equation dm/dt = p * ma − q * mb. The special case using the von Bertalanffy exponent-pair a = 2/3 and b = 1 is most common (it corresponds to the von Ber
Externí odkaz:
https://doaj.org/article/3442616abeb04d9f8ff2b928d4a0c214
Autor:
Katharina Renner-Martin, Norbert Brunner, Manfred Kühleitner, Werner Georg Nowak, Klaus Scheicher
Publikováno v:
PeerJ, Vol 6, p e4205 (2018)
Von Bertalanffy proposed the differential equation m′(t) = p × m(t)a − q × m(t) for the description of the mass growth of animals as a function m(t) of time t. He suggested that the solution using the metabolic scaling exponent a = 2/3 (Von Ber
Externí odkaz:
https://doaj.org/article/1b6af623e96641f6a09eaeec240d0e78
Autor:
Katharina Renner-Martin, Werner Georg Nowak, Norbert Brunner, Manfred Kühleitner, Klaus Scheicher
Publikováno v:
Open Journal of Modelling and Simulation. :19-40
The paper searched for raw data about wild-caught fish, where a sigmoidal growth function described the mass growth significantly better than non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth function (metabolic exponent-pai
Autor:
Werner Georg Nowak
Publikováno v:
Mathematica Slovaca. 67:533-539
Following Friedlander & Iwaniec [FRIEDLANDER, J. B.—IWANIEC, H.: Summation formulae for coefficients of L-functions, Canad. J. Math. 57 (2005), 494—505], the objective of this note are the coefficients a n of the Dirichlet series for L(s, χ 1)L(
Autor:
Katharina Renner-Martin, M. Kühleitner, Klaus Scheicher, Werner Georg Nowak, Norbert Brunner
Systematics of animals was done on their appearance or genetics. One can also ask about similarities or differences in the growth pattern. Quantitative studies of the growth of dinosaurs have made possible comparisons with modern animals, such as the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35d86a086f2fb2b312a5c56a511b8bd1
https://doi.org/10.1101/597260
https://doi.org/10.1101/597260
Autor:
Werner Georg Nowak
Publikováno v:
International Journal of Number Theory. 12:567-583
In the sense of the theory of lattice points in large bodies, a fairly general body of rotation [Formula: see text] in [Formula: see text] is considered whose convexity is being hampered by a “dent” (see Fig. 1). It turns out that, for [Formula:
Autor:
Katharina Renner-Martin, Klaus Scheicher, Werner Georg Nowak, Norbert Brunner, Manfred Kühleitner
Publikováno v:
PLoS ONE, Vol 14, Iss 10, p e0224168 (2019)
PLoS ONE
PLoS ONE
Quantitative studies of the growth of dinosaurs have made comparisons with modern animals possible. Therefore, it is meaningful to ask, if extinct dinosaurs grew faster than modern animals, e.g. birds (modern dinosaurs) and reptiles. However, past st
Autor:
Norbert Brunner, Klaus Scheicher, Katharina Renner-Martin, Manfred Kühleitner, Werner Georg Nowak
Publikováno v:
Poultry Science
Introduction: A large body of literature aims at identifying growth models that fit best to given mass-at-age data. The von Bertalanffy-Putter differential equation is a unifying framework for the study of growth models. Problem: The most common grow