Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Genta Ueno"'
Autor:
Yuya Morishita, Sadayoshi Murakami, Naoki Kenmochi, Hisamichi Funaba, Ichihiro Yamada, Yoshinori Mizuno, Kazuki Nagahara, Hideo Nuga, Ryosuke Seki, Masayuki Yokoyama, Genta Ueno, Masaki Osakabe
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-11 (2024)
Abstract Magnetic fusion plasmas, which are complex systems comprising numerous interacting elements, have large uncertainties. Therefore, future fusion reactors require prediction-based advanced control systems with an adaptive system model and cont
Externí odkaz:
https://doaj.org/article/63e455de52fe42378329afec9f5375d4
Autor:
Akio Nakabayashi, Genta Ueno
Publikováno v:
IEEE Transactions on Automatic Control. 65:3150-3156
This article considers a nonlinear filtering method for handling outliers. The presence of outliers that are gross observation errors can greatly reduce the accuracy of filtering methods that assume Gaussian distributed errors. There are some existin
Autor:
Takuya Kawabata, Genta Ueno
Publikováno v:
Monthly Weather Review. 148:3-20
Non-Gaussian probability density functions (PDFs) in convection initiation (CI) and development were investigated using a particle filter with a storm-scale numerical prediction model and an adaptive observation error estimator (NHM-RPF). An observin
Autor:
Yuya Morishita, Ryosuke Seki, Sadayoshi Murakami, Masayuki Yokoyama, H. Nuga, Genta Ueno, Masaki Osakabe
Publikováno v:
Journal of Fusion Energy. 41
We develop a rapid simulation code for neutral beam injection (NBI) heating analysis, FIT3D-RC, to evaluate the power deposition in NBI-heated plasmas of the Large Helical Device (LHD). This code evaluates the beam ion birth profile using the Gaussia
Publikováno v:
Journal of Disaster Research. 13:873-878
A new method was proposed for the probabilistic projection of future climate that introduced quantile mapping to a regression method using a multi-model ensemble (QM_RMME). Results of this method were then compared with those of the traditional regre
Autor:
Genta Ueno, Seiji Zenitani
Publikováno v:
Physics of Plasmas. 28:122106
Autor:
AKIO NAKABAYASHI1 nakio@ism.ac.jp, GENTA UENO1
Publikováno v:
Monthly Weather Review. Jan2017, Vol. 145 Issue 1, p199-213. 15p. 5 Charts, 7 Graphs.
Publikováno v:
Hydrological Research Letters. 11:44-50
Autor:
Akio Nakabayashi, Genta Ueno
Publikováno v:
Monthly Weather Review. 145:199-213
This paper presents an extension of the ensemble Kalman filter (EnKF) that can simultaneously estimate the state vector and the observation error covariance matrix by using the variational Bayes’s (VB) method. In numerical experiments, this capabil
Publikováno v:
Plasma and Fusion Research. 16:2403016-2403016