Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Genni Fragnelli"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2023, Iss 18,, Pp 1-22 (2023)
Externí odkaz:
https://doaj.org/article/81c89d9e0675482f8573b890064633de
Autor:
Alessandro Camasta, Genni Fragnelli
Publikováno v:
Electronic Journal of Differential Equations, Vol 2022, Iss 87,, Pp 1-22 (2022)
Externí odkaz:
https://doaj.org/article/0c732990cb66405fb81c15afcef5a7af
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2021, Iss 14, Pp 1-24 (2021)
In this paper we focus on the null controllability problem for the heat equation with the so-called inverse square potential and a memory term. To this aim, we first establish the null controllability for a nonhomogeneous singular heat equation by a
Externí odkaz:
https://doaj.org/article/2ba9a36c781f4e02b4bdf41d7988c7a7
Autor:
Genni Fragnelli, Dimitri Mugnai
Publikováno v:
Opuscula Mathematica, Vol 39, Iss 2, Pp 207-225 (2019)
We prove a null controllability result for a parabolic problem with Neumann boundary conditions. We consider non smooth coefficients in presence of a strongly singular potential and a strongly degenerate coefficient, both vanishing at an interior poi
Externí odkaz:
https://doaj.org/article/1e2c2b3863a844869fcd34eb64a411fe
Autor:
Genni Fragnelli, Dimitri Mugnai
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2018, Iss 50, Pp 1-11 (2018)
We prove a null controllability result for a parabolic Dirichlet problem with non smooth coefficients in presence of strongly singular potentials and a coefficient degenerating at an interior point. We cover the case of weights falling out the class
Externí odkaz:
https://doaj.org/article/8643de46d1414633859808668c85fca9
Publikováno v:
Electronic Journal of Differential Equations, Vol 2014, Iss 167,, Pp 1-26 (2014)
In this article, we study an inverse problem for linear degenerate parabolic systems with one force. We establish Lipschitz stability for the source term from measurements of one component of the solution at a positive time and on a subset of the
Externí odkaz:
https://doaj.org/article/fd1134ebc3694d09a2a5e4d992f8e9fa
Publikováno v:
Electronic Journal of Differential Equations, Vol 2012, Iss 189,, Pp 1-30 (2012)
We consider operators in divergence and in nondivergence form with degeneracy at the interior of the space domain. Characterizing the domain of the operators, we prove that they generate positive analytic semigroups on spaces of L^2 type. Finally, so
Externí odkaz:
https://doaj.org/article/0197b7909c8744db92d7d76ea3843ff8
Autor:
Piermarco Cannarsa, Genni Fragnelli
Publikováno v:
Electronic Journal of Differential Equations, Vol 2006, Iss 136, Pp 1-20 (2006)
In this paper we study controllability properties for semilinear degenerate parabolic equations with nonlinearities involving the first derivative in a bounded domain of R. Due to degeneracy, classical null controllability results do not hold in gene
Externí odkaz:
https://doaj.org/article/e9330c41eb184a90a056023806429c32
Autor:
Genni Fragnelli
Publikováno v:
Abstract and Applied Analysis, Vol 2003, Iss 16, Pp 933-951 (2003)
Externí odkaz:
https://doaj.org/article/7e1d4668e05241448b4bcf9bf748e4c8
Publikováno v:
Mathematical Methods in the Applied Sciences.
In this paper we study the null controllability for the problems associated to the operators y_t-Ay - \lambda/b(x) y+\int_0^1 K(t,x,\tau)y(t, \tau) d\tau, (t,x) \in (0,T)\times (0,1) where Ay := ay_{xx} or Ay := (ay_x)_x and the functions a and b deg