Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Gennady Uraltsev"'
Autor:
Davide Raffaele Ceratti, Liat Avram, Gennady Uraltsev, David Cahen, Arava Zohar, Olga Girshevitz, Gary Hodes, Hao Dong, Iddo Pinkas, Roman Kozlov
Publikováno v:
Advanced materials (Deerfield Beach, Fla.). 32(46)
Ion diffusion affects the optoelectronic properties of halide-perovskites (HaPs). Until now, the fastest diffusion has been attributed to the movement of the halides, largely neglecting the contribution of protons, on the basis of computed density es
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :1443-1458
Due to its nonlocal nature, the $r$-variation norm Carleson operator $C_r$ does not yield to the sparse domination techniques of Lerner, Di Plinio and Lerner, Lacey. We overcome this difficulty and prove that the dual form to $C_r$ can be dominated b
Autor:
Alex Amenta, Gennady Uraltsev
We prove $L^p$-bounds for the bilinear Hilbert transform acting on functions valued in intermediate UMD spaces. Such bounds were previously unknown for UMD spaces that are not Banach lattices. Our proof relies on bounds on embeddings from Bochner spa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9beedd0f1078355722dc44da44f93865
http://arxiv.org/abs/1909.06416
http://arxiv.org/abs/1909.06416
Autor:
Gennady Uraltsev, Alex Amenta
We prove modulation invariant embedding bounds from Bochner spaces $L^p(\mathbb{W};X)$ on the Walsh group to outer-$L^p$ spaces on the Walsh extended phase plane. The Banach space $X$ is assumed to be UMD and sufficiently close to a Hilbert space in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a8bfdc7a40550c29c4de4a5c6616740
We describe the precise structure of the distributional Hessian of the distance function from a point of a Riemannian manifold. At the same time we discuss some geometrical properties of the cut locus of a point, and compare some different weak notio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8775f0bccfc7a8fe7c28cd3939a9422
http://arxiv.org/abs/1303.1421
http://arxiv.org/abs/1303.1421