Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Geneviève Raugel"'
Publikováno v:
Journal of Dynamics and Differential Equations. 34:2749-2785
We consider a hyperbolic quasilinear version of the Navier–Stokes equations in $${\mathbb {R}}^2$$ , arising from using a Cattaneo type law instead of a Fourier law. These equations, which depend on a parameter $$\varepsilon $$ , are a way to avoid
Autor:
Geneviève Raugel, Van-Sang Ngo
Publikováno v:
Journal of Dynamical and Control Systems. 27:531-556
This paper deals with the controllability of the second-grade fluids, a class of non-Newtonian of differential type, on a two-dimensional torus. Using the method of Agrachev and Sarychev (J. Math Fluid Mech., 7(1):108–52 (2005)), Agrachev and Saryc
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this work we study Morse–Smale semigroups under nonautonomous perturbations, which leads us to introduce the concept of Morse–Smale evolution processes of hyperbolic type, associated to nonautonomous evolutionary equations. They are amongst th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5abdf589776a5b7cb2c1241a0f50e500
Publikováno v:
Journal of Dynamics and Differential Equations. 34:2639-2679
In this paper, we consider the scalar reaction–diffusion equations $$\partial _t u= \Delta u+f(x,u, \nabla u)$$ on a bounded domain $$\Omega \subset \mathbb {R}^d$$ of class $$\mathcal {C}^{2,\gamma }$$. We show that the heteroclinic and homoclinic
We study the long-time behavior of localized solutions to linear or semilinear parabolic equations in the whole space $\mathbb{R}^n$, where $n \ge 2$, assuming that the diffusion matrix depends on the space variable $x$ and has a finite limit along a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e4408d22e972d14d4f4d2b6116ac0ca
http://arxiv.org/abs/2005.13882
http://arxiv.org/abs/2005.13882
Publikováno v:
Annales scientifiques de l'École normale supérieure. 50:1447-1498
For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in $H^1\times L^2$. In particular, any global solution is b
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2012, 252 (6), pp.3695-3751
Journal of Differential Equations, Elsevier, 2012, 252 (6), pp.3695-3751
This paper is devoted to the large time behavior and especially to the regularity of the global attractor of the second grade fluid equations in the two-dimensional torus. We first recall that, for any size of the material coefficient α > 0 , these
Publikováno v:
Indiana University Mathematics Journal. 56:1083-1156
r. We consider the Navier-Stokes equations on a thin domain of the form Ω e = {x ∈ R 3 | x 1 , x 2 ∈ (0,1), 0 < x 3 < eg (x 1 , x 2 )} supplemented with the following mixed boundary conditions: periodic boundary conditions on the lateral boundar
Autor:
Marius Paicu, Geneviève Raugel
Publikováno v:
ESAIM: Proceedings. 21:65-87
In this paper, we consider a hyperbolic perturbation of the Navier-Stokes equations in R n , n = 2,3, given by (0.2), which consists in adding the term "utt to the Navier-Stokes equations. In the case n = 2, we recall the global existence and uniquen
Autor:
Yingfei Yi, Geneviève Raugel
Publikováno v:
Journal of Dynamics and Differential Equations. 28:593-594