Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Genet, Thomas"'
Autor:
Genet, Thomas, Salmon, Yann
Publikováno v:
Logical Methods in Computer Science, Volume 13, Issue 1 (March 22, 2017) lmcs:3211
We consider the problem of inferring a grammar describing the output of a functional program given a grammar describing its input. Solutions to this problem are helpful for detecting bugs or proving safety properties of functional programs, and sever
Externí odkaz:
http://arxiv.org/abs/1610.05156
Autor:
Genet, Thomas
Ce travail s'intéresse à la preuve de propriétés de sûreté sur les programmes. Prouver de telles propriétés revient généralement à démontrer que les configurations critiques ne sont jamais atteintes lors de l'exécution du programme. Pour
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00477013
http://tel.archives-ouvertes.fr/docs/00/48/05/37/PDF/Final.pdf
http://tel.archives-ouvertes.fr/docs/00/48/05/37/PDF/Final.pdf
Autor:
Genet, Thomas
This paper presents the first step of a wider research effort to apply tree automata completion to the static analysis of functional programs. Tree Automata Completion is a family of techniques for computing or approximating the set of terms reachabl
Externí odkaz:
http://arxiv.org/abs/1410.2901
Tree Regular Model Checking (TRMC) is the name of a family of techniques for analyzing infinite-state systems in which states are represented by terms, and sets of states by Tree Automata (TA). The central problem in TRMC is to decide whether a set o
Externí odkaz:
http://arxiv.org/abs/1203.1495
Autor:
Boyer, Benoît, Genet, Thomas
Publikováno v:
EPTCS 21, 2010, pp. 99-108
The tree automaton completion is an algorithm used for proving safety properties of systems that can be modeled by a term rewriting system. This representation and verification technique works well for proving properties of infinite systems like cryp
Externí odkaz:
http://arxiv.org/abs/1003.4803
This paper is concerned with automatically proving properties about the input-output relation of functional programs operating over algebraic data types. Recent results show how to approximate the image of a functional program using a regular tree la
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b12bda569fb668f4f49bf505cdf63ebb
Publikováno v:
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages, ACM, 2020, International Conference on Functional Programming (ICFP), 4 (ICFP), pp.1-29. ⟨10.1145/3408994⟩
Proceedings of the ACM on Programming Languages, 2020, International Conference on Functional Programming (ICFP), 4 (ICFP), pp.1-29. ⟨10.1145/3408994⟩
Proceedings of the ACM on Programming Languages, ACM, 2020, International Conference on Functional Programming (ICFP), 4 (ICFP), pp.1-29. ⟨10.1145/3408994⟩
Proceedings of the ACM on Programming Languages, 2020, International Conference on Functional Programming (ICFP), 4 (ICFP), pp.1-29. ⟨10.1145/3408994⟩
International audience; This paper defines a new type system applied to the fully automatic verification of safety properties of tree-processing higher order functional programs. We use term rewriting systems to model the program and its semantics an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8c6803b92bbd366376f0a137f64d2d46
https://hal.inria.fr/hal-02795484
https://hal.inria.fr/hal-02795484
Publikováno v:
In Electronic Notes in Theoretical Computer Science April 2004 82(2):426-442
Autor:
Feuillade, Guillaume, Genet, Thomas
Publikováno v:
In Electronic Notes in Theoretical Computer Science May 2003 86(1):133-146
Autor:
Genet, Thomas
Publikováno v:
FSCD 2018-3rd International Conference on Formal Structures for Computation and Deduction
FSCD 2018-3rd International Conference on Formal Structures for Computation and Deduction, Jul 2018, Oxford, United Kingdom. pp.1-20, ⟨10.4230/LIPIcs.FSCD.2018.15⟩
FSCD 2018-3rd International Conference on Formal Structures for Computation and Deduction, Jul 2018, Oxford, United Kingdom. pp.1-20, ⟨10.4230/LIPIcs.FSCD.2018.15⟩
International audience; We consider rewriting of a regular language with a left-linear term rewriting system. We show a completeness theorem on equational tree automata completion stating that, if there exists a regular over-approximation of the set
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8f781f2a38543983ac4d5a37236a2382
https://hal.archives-ouvertes.fr/hal-01778407/document
https://hal.archives-ouvertes.fr/hal-01778407/document