Zobrazeno 1 - 10
of 95
pro vyhledávání: '"General video game playing"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rajesh Kumar Ojha, Sandeep Srivastava, Chitturi Prasad, K. Hareesh Kumar, S Janardhana Rao, Pankaj Goel
Publikováno v:
2021 2nd International Conference on Smart Electronics and Communication (ICOSEC).
This paper presents a number of novel approaches to help facilitate Deep Reinforcement Learning (DRL) for Neural Networks based agents in the domain of General Video Game Playing (GVGP). Using common processing methods, the NN can retain a fixed pred
Autor:
Simon M. Lucas, Raluca D. Gaina, Dennis J. N. J. Soemers, Diego Perez-Liebana, Tom Vodopivec, Adrien Couëtoux, Florian Kirchgesner, Mark H. M. Winands, Jialin Liu
Publikováno v:
IEEE Transactions on Games, 10(2), 209-220. IEEE
This paper showcases the setting and results of the first Two-Player General Video Game AI Competition, which ran in 2016 at the IEEE World Congress on Computational Intelligence and the IEEE Conference on Computational Intelligence and Games. The ch
Autor:
Tobias Joppen, Johannes Fürnkranz
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030894528
In many problem settings, most notably in game playing, an agent receives a possibly delayed reward for its actions. Often, those rewards are handcrafted and not naturally given. Even simple terminal-only rewards, like winning equals 1 and losing equ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a5b6a4ca6ebfbd69b0ee2ab7f3afd9a4
https://doi.org/10.1007/978-3-030-89453-5_4
https://doi.org/10.1007/978-3-030-89453-5_4
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chiara F. Sironi
Research in Artificial Intelligence has shown that machines can be programmed to perform as well as, or even better than humans in specific tasks, such as playing Chess, recognizing images, or driving cars. However, humans still have the advantage of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37986ffa85157499f34405cda308b02f
https://doi.org/10.26481/dis.20191113cs
https://doi.org/10.26481/dis.20191113cs
Publikováno v:
CoG
This paper presents a new Statistical Forward Planning (SFP) method, Rolling Horizon NeuroEvolution of Augmenting Topologies (rhNEAT). Unlike traditional Rolling Horizon Evolution, where an evolutionary algorithm is in charge of evolving a sequence o
Publikováno v:
CoG
2020 IEEE Conference on Games (CoG), 367-374
STARTPAGE=367;ENDPAGE=374;TITLE=2020 IEEE Conference on Games (CoG)
2020 IEEE Conference on Games (CoG), 367-374
STARTPAGE=367;ENDPAGE=374;TITLE=2020 IEEE Conference on Games (CoG)
For general video game playing agents, the biggest challenge is adapting to the wide variety of situations they encounter and responding appropriately. Some success was recently achieved by modifying search-control parameters in agents on-line, durin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e992cafdaa77163b92c40bcc41f65652
https://doi.org/10.1109/CoG47356.2020.9231587
https://doi.org/10.1109/CoG47356.2020.9231587
Game-playing Evolutionary Algorithms, specifically Rolling Horizon Evolutionary Algorithms, have recently managed to beat the state of the art in win rate across many video games. However, the best results in a game are highly dependent on the specif
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6a32fa3d378635d7854bce0f404b31f