Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Gelasio Salazar"'
Autor:
Luis Barba, Ruy Fabila-Monroy, Dolores Lara, Jesús Leaños, Cynthia Rodrıguez, Gelasio Salazar, Francisco Zaragoza
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 15 no. 1, Iss Combinatorics (2013)
Combinatorics
Externí odkaz:
https://doaj.org/article/f581cd740ca942e8a44974f8ad5c70b9
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AD,..., Iss Proceedings (2005)
Consider a set $S$ of points in the plane in convex position, where each point has an integer label from $\{0,1,\ldots,n-1\}$. This naturally induces a labeling of the edges: each edge $(i,j)$ is assigned label $i+j$, modulo $n$. We propose the algor
Externí odkaz:
https://doaj.org/article/a06ee65a55a74cd9ab4d5da7fd0b4885
Given a link projection [Formula: see text] and a link [Formula: see text], it is natural to ask whether it is possible that [Formula: see text] is a projection of [Formula: see text]. Taniyama answered this question for the cases in which [Formula:
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d86cfdd2cea697efef18285cba50376
Hill's Conjecture states that the crossing number $\text{cr}(K_n)$ of the complete graph $K_n$ in the plane (equivalently, the sphere) is $\frac{1}{4}\lfloor\frac{n}{2}\rfloor\lfloor\frac{n-1}{2}\rfloor\lfloor\frac{n-2}{2}\rfloor\lfloor\frac{n-3}{2}\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a87403d18739a12335cd64c228dde03
Publikováno v:
Journal of Graph Theory. 87:443-459
There are three main thrusts to this article: a new proof of Levi's Enlargement Lemma for pseudoline arrangements in the real projective plane; a new characterization of pseudolinear drawings of the complete graph; and proofs that pseudolinear and co
Autor:
Gelasio Salazar, Carolina Medina
We show that for each even integer m ≥ 2 , every reduced shadow with sufficiently many crossings is a shadow of a torus knot T 2 , m + 1 , or of a twist knot T m , or of a connected sum of m trefoil knots.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a9314d9250d71e83e451ba46904adc3
http://arxiv.org/abs/1903.01971
http://arxiv.org/abs/1903.01971
Publikováno v:
SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2019, 33 (1), pp.306-326. ⟨10.1137/17M115462X⟩
SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2019, 33 (1), pp.306-326. ⟨10.1137/17M115462X⟩
Let $D$ be a knot diagram, and let ${\mathcal D}$ denote the set of diagrams that can be obtained from $D$ by crossing exchanges. If $D$ has $n$ crossings, then ${\mathcal D}$ consists of $2^n$ diagrams. A folklore argument shows that at least one of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b109ba83409f78867945c57b144598f8
https://hal.archives-ouvertes.fr/hal-02049077/file/shadows.pdf
https://hal.archives-ouvertes.fr/hal-02049077/file/shadows.pdf
Autor:
Carolina Medina, Gelasio Salazar
Let L be a fixed link. Given a link diagram D, is there a sequence of crossing exchanges and smoothings on D that yields a diagram of L? We approach this problem from the computational complexity point of view. It follows from work by Endo, Itoh, and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0066a8f2d5fe8ad1dd963d21f390c20
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, In press, ⟨10.1090/proc/14498⟩
Proceedings of the American Mathematical Society, American Mathematical Society, In press, ⟨10.1090/proc/14498⟩
International audience; A fact closely related to the classical Erdos-Szekeres theorem is that cyclic arrangements are the only unavoidable simple arrangements of pseudolines: for each fixed m ≥ 1, every sufficiently large simple arrangement of pse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb63e832e35612fe73d81f2b5fb35761
https://hal.archives-ouvertes.fr/hal-02049473/document
https://hal.archives-ouvertes.fr/hal-02049473/document
Autor:
Gelasio Salazar, József Balogh
Publikováno v:
SIAM Journal on Discrete Mathematics. 29:811-822
In the influential paper in which he proved that every graph with $m$ edges can be embedded in a book with $O({m}^{1/2})$ pages, Malitz proved the existence of $d$-regular $n$-vertex graphs that require $\Omega(\sqrt{d}n^{\frac{1}{2}-\frac{1}{d}})$ p