Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Gelash, Andrey"'
Autor:
Mucci, Alexandre, Suret, Pierre, Copie, François, Randoux, Stephane, Mullyadzhanov, Rustam, Gelash, Andrey
The model underlying physics of guiding light in single-mode fibers -- the one-dimensional nonlinear Schr\"odinger equation (NLSE), reveals a remarkable balance of the fiber dispersion and nonlinearity, leading to the existence of optical solitons. W
Externí odkaz:
http://arxiv.org/abs/2409.16090
We investigate theoretically and numerically the dynamics of long-living oscillating coherent structures - bi-solitons - in the exact and approximate models for waves on the free surface of deep water. We generate numerically the bi-solitons of the a
Externí odkaz:
http://arxiv.org/abs/2312.16617
Autor:
Suret, Pierre, Randoux, Stephane, Gelash, Andrey, Agafontsev, Dmitry, Doyon, Benjamin, El, Gennady
The concept of soliton gas was introduced in 1971 by V. Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted soliton gas, solitons with r
Externí odkaz:
http://arxiv.org/abs/2304.06541
We consider right and left formulations of the inverse scattering problem for the Zakharov-Shabat system and the corresponding integral Gelfand-Levitan-Marchenko equations. Both formulations are helpful for numerical solving of the inverse scattering
Externí odkaz:
http://arxiv.org/abs/2211.08679
Autor:
Gelash, Andrey, Raskovalov, Anton
We study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two-component extension of the one-dimensional focusing nonlinear Schrodinger equation -- the Manakov system
Externí odkaz:
http://arxiv.org/abs/2211.07014
We construct a broad class of solutions of the KP-I equation by using a reduced version of the Grammian form of the $\tau$-function. The basic solution is a linear periodic chain of lumps propagating with distinct group and wave velocities. More gene
Externí odkaz:
http://arxiv.org/abs/2102.07038
Mutual interaction of localized nonlinear waves, e.g. solitons and modulation instability patterns, is a fascinating and intensively-studied topic of nonlinear science. In this research report, we report on the observation of a novel type of breather
Externí odkaz:
http://arxiv.org/abs/2010.07387
Autor:
Mullyadzhanov, Rustam, Gelash, Andrey
Publikováno v:
Phys. Rev. Lett. 126, 234101 (2021)
We investigate the fundamental problem of the nonlinear wavefield scattering data corrections in response to a perturbation of initial condition using inverse scattering transform theory. We present a complete theoretical linear perturbation framewor
Externí odkaz:
http://arxiv.org/abs/2008.08874
Autor:
Suret, Pierre, Tikan, Alexey, Bonnefoy, Félicien, Copie, François, Ducrozet, Guillaume, Gelash, Andrey, Prabhudesai, Gaurav, Michel, Guillaume, Cazaubiel, Annette, Falcon, Eric, El, Gennady, Randoux, Stéphane
Publikováno v:
Phys. Rev. Lett. 125, 264101 (2020)
Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optic
Externí odkaz:
http://arxiv.org/abs/2006.16778
Autor:
Gelash, Andrey, Mullyadzhanov, Rustam
Publikováno v:
Phys. Rev. E 101, 052206 (2020)
Direct scattering transform of nonlinear wave fields with solitons may lead to anomalous numerical errors of soliton phase and position parameters. With the focusing one-dimensional nonlinear Schr\"odinger equation serving as a model, we investigate
Externí odkaz:
http://arxiv.org/abs/1912.00203