Zobrazeno 1 - 10
of 2 184
pro vyhledávání: '"Gekeler"'
Publikováno v:
Clinical Ophthalmology, Vol Volume 16, Pp 223-229 (2022)
Antony William,1 Matthias Dias Blak,2 Altan Eshref,2 Florian Gekeler,2,3 Andreas Schatz,2,3 Katrin Gekeler2,3 1Department of Ophthalmology, University Hospital Wuerzburg, Wuerzburg, Germany; 2Department of Ophthalmology, Klinikum Stuttgart, Stuttgart
Externí odkaz:
https://doaj.org/article/15e9deaf0deb44d6a68c9bcfb9c28a9d
Autor:
Gekeler, Ernst-Ulrich
We present a new notion of distribution and derived distribution of rank $r \in \mathbb{N}$ for a global function field $K$ with a distinguished place $\infty$. It allows to describe the relations between division points, isogenies, and discriminants
Externí odkaz:
http://arxiv.org/abs/2402.00545
Autor:
Gekeler, Ernst-Ulrich
We study expansions of Drinfeld modular forms of rank \(r \geq 2\) along the boundary of moduli varieties. Product formulas for the discriminant forms \(\Delta_{\mathfrak{n}}\) are developed, which are analogous with Jacobi's formula for the classica
Externí odkaz:
http://arxiv.org/abs/2311.02131
Autor:
Gekeler, Ernst-Ulrich
The coefficient forms \( {}_{a} \ell_{k} \) and the para-Eisenstein series \(\alpha_{k}\) are simplicial Drinfeld modular forms. We study the attached simplicial complexes \(\mathcal{BT}^{r}( {}_{a} \ell_{k})\) and \(\mathcal{BT}^{r}(\alpha_{k})\), w
Externí odkaz:
http://arxiv.org/abs/2208.09908
Autor:
Gekeler, Ernst-Ulrich
Publikováno v:
In Journal of Number Theory April 2025 269:260-340
Autor:
Gekeler, Ernst-Ulrich
The zeroes of Goss polynomials $G_{k, \Lambda}(X)$ for $\Lambda = A \defeq \mathbb{F}_{q}[T]$ and similar lattices $\Lambda$ are studied. Generically, the zero distribution follows a simple pattern governed by the $q$-adic expansion of $k-1$. However
Externí odkaz:
http://arxiv.org/abs/2104.13219