Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Geissert, Matthias"'
Publikováno v:
J. Diff. Eq., 258(2) (2015), 535-554
We consider a class of semilinear Volterra type stochastic evolution equation driven by multiplicative Gaussian noise. The memory kernel, not necessarily analytic, is such that the deterministic linear equation exhibits a parabolic character. Under a
Externí odkaz:
http://arxiv.org/abs/1404.4131
Autor:
Geissert, Matthias, Hansel, Tobias
Publikováno v:
J. Math. Soc. Japan, Vol. 63, No.3 (July 2011), 1027 -- 1037
Consider the Navier-Stokes flow past a rotating obstacle with a general time-dependent angular velocity and a time-dependent outflow condition at infinity. After rewriting the problem on a fixed domain, one obtains a non-autonomous system of equation
Externí odkaz:
http://arxiv.org/abs/1006.3618
We establish the maximal regularity for nonautonomous Ornstein-Uhlenbeck operators in $L^p$-spaces with respect to a family of invariant measures, where $p\in (1,+\infty)$. This result follows from the maximal $L^p$-regularity for a class of elliptic
Externí odkaz:
http://arxiv.org/abs/0903.3117
In this paper we investigate a class of nonautonomous linear parabolic problems with time depending Ornstein-Uhlenbeck operators. We study the asymptotic behavior of the associated evolution operator and evolution semigroup in the periodic and non-pe
Externí odkaz:
http://arxiv.org/abs/0803.2648
We characterize the domain of the realization of the linear parabolic operator Gu := u_t + L(t)u (where, for each real t, L(t) is an Ornstein-Uhlenbeck operator), in L^2 spaces with respect to a suitable measure, that is invariant for the associated
Externí odkaz:
http://arxiv.org/abs/0801.3224
Publikováno v:
In Journal of Differential Equations 15 January 2015 258(2):535-554
Publikováno v:
Transactions of the American Mathematical Society, 2013 Mar 01. 365(3), 1393-1439.
Externí odkaz:
https://www.jstor.org/stable/23513450
Publikováno v:
Transactions of the American Mathematical Society, 2009 Feb 01. 361(2), 653-669.
Externí odkaz:
https://www.jstor.org/stable/40302784
Autor:
Geissert, Matthias
Publikováno v:
SIAM Journal on Numerical Analysis, 2006 Jan 01. 44(2), 677-698.
Externí odkaz:
https://www.jstor.org/stable/40232770
Autor:
Geissert, Matthias1 geissert@mathematik.tu-darmstadt.de, Hieber, Matthias hieber@mathematik.tu-darmstadt.de, Nguyen, Thieu2 huy.nguyenthieu@hust.edu.vn
Publikováno v:
Archive for Rational Mechanics & Analysis. Jun2016, Vol. 220 Issue 3, p1095-1118. 24p.