Zobrazeno 1 - 10
of 118
pro vyhledávání: '"Geisser, Thomas"'
Autor:
Geisser, Thomas H.
We give a version of the Artin-Tate formula for surfaces over finite fields not assuming Tate's conjecture. It gives an equality between terms related to the Brauer group on the one hand and terms related to the Neron-Severi group on the other hand.
Externí odkaz:
http://arxiv.org/abs/2401.03709
Autor:
Geisser, Thomas H., Morin, Baptiste
Let $K$ be a finite extension of the $p$-adic numbers $\mathbb Q_p$ with ring of integers $\mathcal O_K$, $\mathcal X$ a regular scheme, proper, flat, and geometrically irreducible over $\mathcal O_K$ of dimension $d$, and $\mathcal X_K$ its generic
Externí odkaz:
http://arxiv.org/abs/2211.13463
Autor:
Geisser, Thomas H., Morin, Baptiste
Publikováno v:
In Journal of Number Theory July 2024 260:41-70
Autor:
Geisser, Thomas H., Morin, Baptiste
We define cohomological complexes of locally compact abelian groups associated with varieties over $p$-adic fields and prove a duality theorem under some assumption. Our duality takes the form of Pontryagin duality between locally compact motivic coh
Externí odkaz:
http://arxiv.org/abs/2108.01849
Autor:
Geisser, Thomas H., Morin, Baptiste
Let $\mathcal X$ be a regular scheme, flat and proper over the ring of integers of a $p$-adic field, with generic fiber $X$ and special fiber $\mathcal X_s$. We study the left kernel $Br(\mathcal X)$ of the Brauer-Manin pairing $Br(X)\times CH_0(X)\t
Externí odkaz:
http://arxiv.org/abs/2012.02428
Autor:
Geisser, Thomas H., Suzuki, Takashi
Publikováno v:
Journal f\"ur die reine und angewandte Mathematik (Crelles Journal), vol. 2022, no. 793, 2022, pp. 281-304
The purpose of this paper is to give a formula for the leading coefficient at $s=1$ of the $L$-function of one-motives over function fields in terms of Weil-\'etale cohomology, generalizing the Weil-\'etale version of the Birch and Swinnerton-Dyer co
Externí odkaz:
http://arxiv.org/abs/2009.14504
Autor:
Geisser, Thomas H., Suzuki, Takashi
Publikováno v:
J. Number Theory 208 (2020), 367-389
We give a reformulation of the Birch and Swinnerton-Dyer conjecture over global function fields in terms of Weil-etale cohomology of the curve with coefficients in the Neron model, and show that it holds under the assumption of finiteness of the Tate
Externí odkaz:
http://arxiv.org/abs/1812.03619
Autor:
Geisser, Thomas H.
Let $\mathcal X$ be a regular variety, flat and proper over a complete regular curve over a finite field, such that the generic fiber $X$ is smooth and geometrically connected. We prove that the Brauer group of $\mathcal X$ is finite if and only Tate
Externí odkaz:
http://arxiv.org/abs/1801.02406
Autor:
Geisser, Thomas H., Morin, Baptiste
Publikováno v:
In Journal of Number Theory September 2022 238:444-463
Autor:
Geisser, Thomas H.
We discuss duality pairings on integral \'etale motivic cohomology groups of regular and proper schemes over algebraically closed fields, local fields, finite fields, and arithmetic schemes.
Comment: To appear in: Proceedings of the Internationa
Comment: To appear in: Proceedings of the Internationa
Externí odkaz:
http://arxiv.org/abs/1712.09021