Zobrazeno 1 - 10
of 111
pro vyhledávání: '"Geir Dahl"'
Autor:
Richard Brualdi, Geir Dahl
Publikováno v:
The Electronic Journal of Linear Algebra. 39:260-281
We introduce a generalization of alternating sign matrices (ASMs) called multiASMs and develop some of their properties. Classes of multiASMs with specified row and column sum vectors $R$ and $S$ extend the classes of $(0,1)$-matrices with specified
Autor:
Richard A. Brualdi, Geir Dahl
Permutation graphs are graphs associated with permutations where edges represent inversions. We study different classes of permutation graphs and isomorphic permutation graphs. A complete answer of a basic isomorphism question is given for trees. A c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5be5ed3c41b2c7cef840ebd739ae452a
http://hdl.handle.net/10852/99375
http://hdl.handle.net/10852/99375
Autor:
Geir Dahl, Richard A. Brualdi
Publikováno v:
Discrete Applied Mathematics. 297:21-34
We investigate ( 0 , 1 ) -matrices that are convex, which means that the ones are consecutive in every row and column. These matrices occur in discrete tomography. The notion of ranked essential sets, known for permutation matrices, is extended to co
The bottleneck matrix $M$ of a rooted tree $T$ is a combinatorial object encoding the spatial distribution of the vertices with respect to the root. The spectral radius of $M$, known as the Perron value of the rooted tree, is closely related to the t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f0ff0f199d6a92a29e34e82a6695f42
http://hdl.handle.net/10773/33404
http://hdl.handle.net/10773/33404
Autor:
Gaute Wilhelmsen Seljestad, María Quintela, Dorte Bekkevold, Christophe Pampoulie, Edward D. Farrell, Cecilie Kvamme, Aril Slotte, Geir Dahle, Anne Grete Sørvik, Mats E. Pettersson, Leif Andersson, Arild Folkvord, Kevin A. Glover, Florian Berg
Publikováno v:
Evolutionary Applications, Vol 17, Iss 10, Pp n/a-n/a (2024)
ABSTRACT Sustainable fisheries management is important for the continued harvest of the world's marine resources, especially as they are increasingly challenged by a range of climatic and anthropogenic factors. One of the pillars of sustainable fishe
Externí odkaz:
https://doaj.org/article/cbf688b3f0aa447d8fb0faf22a955020
Autor:
Salah eddine Sbiba, María Quintela, Johanne Øyro, Geir Dahle, Alba Jurado-Ruzafa, Kashona Iita, Nikolaos Nikolioudakis, Hocein Bazairi, Malika Chlaida
Publikováno v:
PeerJ, Vol 12, p e17928 (2024)
Sustainable management of transboundary fish stocks hinges on accurate delineation of population structure. Genetic analysis offers a powerful tool to identify potential subpopulations within a seemingly homogenous stock, facilitating the development
Externí odkaz:
https://doaj.org/article/ed2861fd9b0e4bc1b09f87e296f43bbf
Autor:
Richard A. Brualdi, Geir Dahl
Publikováno v:
Discrete Applied Mathematics. 266:3-15
Let A be an n × n ( 0 , ∗ ) -matrix, so each entry is 0 or ∗ . An A -interval matrix is a ( 0 , 1 ) -matrix obtained from A by choosing some ∗ ’s so that in every interval of consecutive ∗ ’s, in a row or column of A , exactly one ∗ is
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Submitted by Enide Martins (enide@ua.pt) on 2018-12-29T19:16:02Z No. of bitstreams: 1 Trabajo sometidoEnideGeirLauraREV.pdf: 287985 bytes, checksum: b42325a10a306059a51293a6acc9b31f (MD5) Approved for entry into archive by Diana Silva (dianasilva@ua.
Autor:
Geir Dahl, Richard A. Brualdi
We study sign-restricted matrices (SRMs), a class of rectangular ( 0 , ± 1 ) -matrices generalizing the alternating sign matrices (ASMs). In an SRM each partial column sum, starting from row 1, equals 0 or 1, and each partial row sum, starting from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0bf99928b8f95ea77e790deed1269d4
http://arxiv.org/abs/2101.04150
http://arxiv.org/abs/2101.04150