Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Gee-Choon Lau"'
Publikováno v:
Opuscula Mathematica, Vol 43, Iss 6, Pp 841-864 (2023)
Let \(G = (V,E)\) be a simple graph of order \(p\) and size \(q\). A graph \(G\) is called local antimagic (total) if \(G\) admits a local antimagic (total) labeling. A bijection \(g : E \to \{1,2,\ldots,q\}\) is called a local antimagic labeling of
Externí odkaz:
https://doaj.org/article/dee59178a9664156ac6e9d494c1f7744
Autor:
Gee-Choon Lau, Wai Chee Shiu
Publikováno v:
Opuscula Mathematica, Vol 43, Iss 3, Pp 429-453 (2023)
Let \(G = (V,E)\) be a connected simple graph of order \(p\) and size \(q\). A graph \(G\) is called local antimagic (total) if \(G\) admits a local antimagic (total) labeling. A bijection \(g : E \to \{1,2,\ldots,q\}\) is called a local antimagic la
Externí odkaz:
https://doaj.org/article/99e3c33d6f7b41848959da4c387f46c1
Publikováno v:
Discrete Mathematics Letters, Vol 11, Pp 76-83 (2023)
Externí odkaz:
https://doaj.org/article/13c1423f7cad4e67a2f257c58dc54724
Publikováno v:
AIMS Mathematics, Vol 7, Iss 7, Pp 11784-11800 (2022)
For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ i
Externí odkaz:
https://doaj.org/article/a0df1e3a4592412b9255d87f840d858b
Publikováno v:
Journal of King Saud University: Science, Vol 30, Iss 2, Pp 286-291 (2018)
Let G=(V,E) be a simple, finite and undirected (p,q)-graph with p vertices and q edges. A graph G is Skolem odd difference mean if there exists an injection f:V(G)→{0,1,2,…,p+3q-3} and an induced bijection f∗:E(G)→{1,3,5,…,2q-1} such that e
Externí odkaz:
https://doaj.org/article/d5e717348e044f9da212c75db88abbc1
Autor:
Wai-Chee Shiu, Gee-Choon Lau
Publikováno v:
Symmetry, Vol 13, Iss 5, p 849 (2021)
Let G=(V(G),E(G)) be a simple, finite and undirected graph of order n. Given a bijection f:V(G)→{1,…,n}, and every edge uv in E(G), let S=f(u)+f(v) and D=|f(u)−f(v)|. The labeling f induces an edge labeling f′:E(G)→{0,1} such that for an ed
Externí odkaz:
https://doaj.org/article/a65f4469a10549b79ca4d79b56be783d
Publikováno v:
Symmetry, Vol 13, Iss 3, p 513 (2021)
For any graph G of order p, a bijection f:V(G)→{1,2,…,p} is called a numbering of G. The strength strf(G) of a numbering f of G is defined by strf(G)=max{f(u)+f(v)|uv∈E(G)}, and the strength str(G) of a graph G is str(G)=min{strf(G)|f is a numb
Externí odkaz:
https://doaj.org/article/957d7af7b9f24969988ecd41415c7923
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 13, Iss 2, Pp 107-111 (2016)
Let G be a graph with vertex set V(G) and edge set E(G). A vertex labeling f:V(G)→Z2 induces an edge labeling f+:E(G)→Z2 defined by f+(xy)=f(x)+f(y), for each edge xy∈E(G). For i∈Z2, let vf(i)=|{v∈V(G):f(v)=i}| and ef(i)=|{e∈E(G):f+(e)=i}
Externí odkaz:
https://doaj.org/article/e242f23294104abfa6d9ca79fb5beaae
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 13, Iss 2, Pp 200-209 (2016)
Let G=(V(G),E(G)) be a simple, finite and undirected graph of order p and size q. A bijection f:V(G)∪E(G)→{k,k+1,k+2,…,k+p+q−1} such that f(uv)=|f(u)−f(v)| for every edge uv∈E(G) is said to be a k-super graceful labeling of G. We say G is
Externí odkaz:
https://doaj.org/article/0ed839840a3343098c50bb9bc5b5301f
Publikováno v:
Electronic Journal of Graph Theory and Applications, Vol 4, Iss 1, Pp 60-78 (2016)
For a graph $G$, let $P(G,\lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent if they share the same chromatic polynomial. A graph $G$ is chromatically unique if for any graph chromatically equivalent
Externí odkaz:
https://doaj.org/article/0d12ec908e4f4445b2608c8d31f51858