Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Ge‐Qi Mao"'
Autor:
Na Bai, Kan‐Hao Xue, Jinhai Huang, Jun‐Hui Yuan, Wenlin Wang, Ge‐Qi Mao, Lanqing Zou, Shengxin Yang, Hong Lu, Huajun Sun, Xiangshui Miao
Publikováno v:
Advanced Electronic Materials, Vol 9, Iss 1, Pp n/a-n/a (2023)
Abstract The wake‐up phenomenon widely exists in hafnia‐based ferroelectric capacitors, which causes device parameter variation over time. Crystallization at a higher temperature has been reported to be effective in eliminating wake‐up, but hig
Externí odkaz:
https://doaj.org/article/9e4a5d5b568d42289925a6e3d6474d1b
Autor:
Ying Zhang, Ge-Qi Mao, Xiaolong Zhao, Yu Li, Meiyun Zhang, Zuheng Wu, Wei Wu, Huajun Sun, Yizhong Guo, Lihua Wang, Xumeng Zhang, Qi Liu, Hangbing Lv, Kan-Hao Xue, Guangwei Xu, Xiangshui Miao, Shibing Long, Ming Liu
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
Understanding the mechanism of the formation and rupture of conductive filaments in HfO2-based memristors is essential to solve the problem of scalability of the devices. Here, Zhang et al. visualize this process by tracking atomic-scale evolution of
Externí odkaz:
https://doaj.org/article/4ffeb9357fe24668b74ff078b797f12d
Autor:
Chengxu Wang, Ge‐Qi Mao, Menghua Huang, Enming Huang, Zichong Zhang, Junhui Yuan, Weiming Cheng, Kan‐Hao Xue, Xingsheng Wang, Xiangshui Miao
Publikováno v:
Advanced Science, Vol 9, Iss 21, Pp n/a-n/a (2022)
Abstract The adjustable conductance of a two‐terminal memristor in a crossbar array can facilitate vector‐matrix multiplication in one step, making the memristor a promising synapse for efficiently implementing neuromorphic computing. To achieve
Externí odkaz:
https://doaj.org/article/5da36557459f43e6b5c406d47914cd28
Publikováno v:
JPhys Materials, Vol 6, Iss 2, p 024001 (2023)
In recent years, hafnia-based ferroelectrics have attracted enormous attention due to their capability of maintaining ferroelectricity below 10 nm thickness and excellent compatibility with microelectronics flow lines. However, the physical origin of
Externí odkaz:
https://doaj.org/article/0e943314e98149aeb72c68043ddbf8e8
Autor:
Ge-Qi Mao, Kan-Hao Xue, Ya-Qian Song, Wei Wu, Jun-Hui Yuan, Li-Heng Li, Huajun Sun, Shibing Long, Xiang-Shui Miao
Publikováno v:
AIP Advances, Vol 9, Iss 10, Pp 105007-105007-9 (2019)
The exact composition and structure of conductive filaments in hafnia-based memristors are still not fully understood, but recent theoretical investigations reveal that hexagonal HfOx phases close to the h.c.p. Hf structure are probable filament cand
Externí odkaz:
https://doaj.org/article/f8ebfcff8fa944fb92d95dd9888c556d
Autor:
Jun-Hui Yuan, Ge-Qi Mao, Kan-Hao Xue, Na Bai, Chengxu Wang, Yan Cheng, Hangbing Lyu, Huajun Sun, Xingsheng Wang, Xiangshui Miao
Publikováno v:
Chemistry of Materials. 35:94-103
Autor:
Peng Yuan, Ge-Qi Mao, Yan Cheng, Kan-Hao Xue, Yunzhe Zheng, Yang Yang, Pengfei Jiang, Yannan Xu, Yuan Wang, Yuhao Wang, Yaxin Ding, Yuting Chen, Zhiwei Dang, Lu Tai, Tiancheng Gong, Qing Luo, Xiangshui Miao, Qi Liu
Publikováno v:
Nano Research. 15:3667-3674
$\mathrm{HfO_2}$-based dielectrics are promising for nanoscale ferroelectric applications, and the most favorable material within the family is Zr-substituted hafnia, i.e., $\mathrm{Hf_{1-x}Zr_xO_2}$ (HZO). The extent of Zr substitution can be great,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6218d7cc0149ae380607581469cbbb65
http://arxiv.org/abs/2302.03852
http://arxiv.org/abs/2302.03852
Autor:
Na Bai, Kan‐Hao Xue, Jinhai Huang, Jun‐Hui Yuan, Wenlin Wang, Ge‐Qi Mao, Lanqing Zou, Shengxin Yang, Hong Lu, Huajun Sun, Xiangshui Miao
Publikováno v:
Advanced Electronic Materials. 9
Autor:
Chengxu, Wang, Ge-Qi, Mao, Menghua, Huang, Enming, Huang, Zichong, Zhang, Junhui, Yuan, Weiming, Cheng, Kan-Hao, Xue, Xingsheng, Wang, Xiangshui, Miao
Publikováno v:
Advanced science (Weinheim, Baden-Wurttemberg, Germany). 9(21)
The adjustable conductance of a two-terminal memristor in a crossbar array can facilitate vector-matrix multiplication in one step, making the memristor a promising synapse for efficiently implementing neuromorphic computing. To achieve controllable