Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Gaywalee Yamskulna"'
Autor:
Katrina Barron, Karina Batistelli, Florencia Orosz Hunziker, Veronika Pedić Tomić, Gaywalee Yamskulna
Using the Zhu algebra for a certain category of $\mathbb{C}$-graded vertex algebras $V$, we prove that if $V$ is finitely $\Omega$-generated and satisfies suitable grading conditions, then $V$ is rational, i.e. has semi-simple representation theory,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c8728e3d6f74047c03c21a4dc9152d83
http://arxiv.org/abs/2207.00638
http://arxiv.org/abs/2207.00638
Autor:
Gaywalee Yamskulna, Phichet Jitjankarn
Publikováno v:
Journal of Algebra. 557:181-210
In this paper, we study an impact of Leibniz algebras on the algebraic structure of N -graded vertex algebras. We provide easy ways to characterize indecomposable non-simple N -graded vertex algebras ⊕ n = 0 ∞ V ( n ) such that dim V ( 0 )
Publikováno v:
Contemporary Mathematics ISBN: 9781470449384
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::38a71999870c5fdfcfc32fb313c25e84
https://doi.org/10.1090/conm/753
https://doi.org/10.1090/conm/753
Autor:
Gaywalee Yamskulna, Phichet Jitjankarn
Let $A$ be a finite dimensional unital commutative associative algebra and let $B$ be a finite dimensional vertex $A$-algebroid such that its Levi factor is isomorphic to $sl_2$. Under suitable conditions, we construct an indecomposable non-simple $\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37421517b5f909593b8e722078637ac9
http://arxiv.org/abs/1908.10446
http://arxiv.org/abs/1908.10446
Autor:
Geoffrey Mason, Gaywalee Yamskulna
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 9, p 063 (2013)
This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking v
Externí odkaz:
https://doaj.org/article/1fc230d39f05425f99407d894f4fbf69
Publikováno v:
Finite Fields and Their Applications. 35:330-351
We give several characterizations of Mersenne primes (Theorem 1.1) and of primes for which 2 is a primitive root (Theorem 1.2). These characterizations involve group algebras, circulant matrices, binomial coefficients, and bipartite graphs.
Comm
Comm
Autor:
Gaywalee Yamskulna
Publikováno v:
Journal of Algebra and Its Applications. 18:1950225
We introduce a notion of Mathieu–Zhao subspaces of vertex algebras. Among other things, we show that for a vertex algebra [Formula: see text] and its subspace [Formula: see text] that contains [Formula: see text], [Formula: see text] is a Mathieu
We develop criteria to decide if an $N=2$ or $N=4$ super conformal algebra is a subalgebra of a super vertex operator algebra in general, and of a super lattice theory in particular. We give some specific examples.
Comment: The assumptions of Th
Comment: The assumptions of Th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ffc9a2cf48105e725f173a368b524c89
Autor:
Phichet Jitjankarn, Gaywalee Yamskulna
Publikováno v:
Communications in Algebra. 38:4404-4415
In [3], Abe, Buhl, and Dong showed that, when L is a positive definite even lattice, the vertex algebra and its irreducible weak modules satisfy the C 2-cofiniteness condition. In this article, we extend their results by showing that the vertex algeb
Autor:
Gaywalee Yamskulna
Publikováno v:
Journal of Algebra. 321:1005-1015
In this paper we prove that the vertex algebra V L + is rational if L is a negative definite even lattice of finite rank, or if L is a non-degenerate even lattice of a finite rank that is neither positive definite nor negative definite. In particular