Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Gayral, Victor"'
Given an extension $0\to V\to G\to Q\to1$ of locally compact groups, with $V$ abelian, and a compatible essentially bijective $1$-cocycle $\eta\colon Q\to\hat V$, we define a dual unitary $2$-cocycle on $G$ and show that the associated deformation of
Externí odkaz:
http://arxiv.org/abs/2312.00523
Autor:
Gayral, Victor, Marie, Valentin
Given a locally compact group $G=Q\ltimes V$ such that $V$ is Abelian and such that the action of $Q$ on the Pontryagin dual $\hat V$ has a free orbit of full measure, we construct a family of unitary dual $2$-cocycles $\Omega_\omega$ (aka non-formal
Externí odkaz:
http://arxiv.org/abs/2305.03389
Consider a locally compact group $G=Q\ltimes V$ such that $V$ is abelian and the action of $Q$ on the dual abelian group $\hat V$ has a free orbit of full measure. We show that such a group $G$ can be quantized in three equivalent ways: (1) by reflec
Externí odkaz:
http://arxiv.org/abs/1906.01889
Autor:
Gayral, Victor, Jondreville, David
For a non Archimedean local field which is not of characteristic $2$, nor an extension of $\mathbb Q_2$, we construct a pseudo-differential calculus covariant under a unimodular subgroup of the affine group of the field. Our phase space is a quotient
Externí odkaz:
http://arxiv.org/abs/1702.01542
Publikováno v:
Internat. J. Math. 27 (2016), no. 3, 1650023; Internat. J. Math. 30 (2019), no. 11, 1992002
We show that two approaches to equivariant strict deformation quantization of C*-algebras by actions of negatively curved Kahlerian Lie groups, one based on oscillatory integrals and the other on quantizations maps defined by dual 2-cocycles, are equ
Externí odkaz:
http://arxiv.org/abs/1508.07762
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gayral, Victor, Jondreville, David
The main objective of this article is to develop the theory of deformation of $C^*$-algebras endowed with a group action, from the perspective of non-formal equivariant quantization. This program, initiated in \cite{Bieliavsky-Gayral}, aims to extend
Externí odkaz:
http://arxiv.org/abs/1409.3349
Publikováno v:
Dev. Math. 37 (2014) 41-76, Springer
We define and study a noncommutative Fourier transform on every homogeneous complex bounded domain. We then give an application in noncommutative differential geometry by defining noncommutative Baumslag-Solitar tori.
Comment: 27 pages
Comment: 27 pages
Externí odkaz:
http://arxiv.org/abs/1311.1871
Autor:
Gayral, Victor, Sukochev, Fedor
We study the relationships between Dixmier traces, zeta-functions and traces of heat semigroups beyond the dual of the Macaev ideal and in the general context of semifinite von Neumann algebras. We show that the correct framework for this investigati
Externí odkaz:
http://arxiv.org/abs/1302.1367
Autor:
Bieliavsky, Pierre, Gayral, Victor
Let $\mathbb B$ be a Lie group admitting a left-invariant negatively curved K\"ahlerian structure. Consider a strongly continuous action $\alpha$ of $\mathbb B$ on a Fr\'echet algebra $\mathcal A$. Denote by $\mathcal A^\infty$ the associated Fr\'ech
Externí odkaz:
http://arxiv.org/abs/1109.3419