Zobrazeno 1 - 10
of 390
pro vyhledávání: '"Gavrus, A."'
Autor:
Gavrus, Cristian
In this note we discuss the question of homogeneous $ L^2 L^{\infty} $ Strichartz estimates for the Wave equation in dimensions $ n \geq 4 $ raised by Fang and Wang and recently shown to fail by Guo, Li, Nakanishi and Yan using probability theory. We
Externí odkaz:
http://arxiv.org/abs/2208.08822
Autor:
Gavrus, Cristian
We prove global well-posedness of the $ 3d $ Yang-Mills equation in the temporal gauge in $ H^{\sigma} $ for $ \sigma > \frac{5}{6} $. Unlike related equations, Yang-Mills is not directly amenable to the method of almost conservation laws (I-method)
Externí odkaz:
http://arxiv.org/abs/2208.01503
Autor:
Dodson, Benjamin, Gavrus, Cristian
In this paper we prove instability of the soliton for the focusing, mass-critical generalized KdV equation. We prove that the solution to the generalized KdV equation for any initial data with mass smaller than the mass of the soliton and close to th
Externí odkaz:
http://arxiv.org/abs/2012.00929
Autor:
GAVRUS, Adinel1 adinel.gavrus@insa-rennes.fr
Publikováno v:
International Conference & Exhibition of Hydraulics & Pneumatics (HERVEX). Nov2023, Vol. 27, p6-19. 14p.
Publikováno v:
In Materials Today: Proceedings 2023 72 Part 2:586-593
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Analysis & PDE 14 (2021) 985-1084
In this article we initiate the study of 1+ 2 dimensional wave maps on a curved spacetime in the low regularity setting. Our main result asserts that in this context the wave maps equation is locally well-posed at almost critical regularity. As a key
Externí odkaz:
http://arxiv.org/abs/1810.05632
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Global well-posedness for the massive Maxwell-Klein-Gordon equation with small critical Sobolev data
Autor:
Gavrus, Cristian
In this paper we prove global well-posedness and modified scattering for the massive Maxwell-Klein-Gordon equation in the Coulomb gauge on $\mathbb{R}^{1+d}$ $(d \geq 4)$ for data with small critical Sobolev norm. This extends to the general case $ m
Externí odkaz:
http://arxiv.org/abs/1610.03581
Autor:
Gavrus, Cristian, Oh, Sung-Jin
In this paper, we prove global well-posedness of the massless Maxwell-Dirac equation in Coulomb gauge on $\mathbb{R}^{1+d}$ $(d \geq 4)$ for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components
Externí odkaz:
http://arxiv.org/abs/1604.07900