Zobrazeno 1 - 10
of 4 134
pro vyhledávání: '"Gavril A"'
Autor:
Farkas, Gavril, Izadi, Elham
We describe an extension at the level of the moduli space of stable spin curves of genus g of the map associating to an ineffective spin structure its Scorza curve (equivalently, the vanishing locus of its Szeg\H{o} kernel). We compute the class of t
Externí odkaz:
http://arxiv.org/abs/2409.13303
We construct irrational irreducible components of the Hilbert scheme of points of affine n-dimensional space, for n at least 12. We start with irrational components of the Hilbert scheme of curves in P^3 and use methods developed by Jelisiejew to rel
Externí odkaz:
http://arxiv.org/abs/2405.11997
Autor:
Farkas, Gavril, Verra, Alessandro
We show that the moduli space R_9 of Prym curves of genus 9 is uniruled. This is the largest genus g for which R_g has negative Kodaira dimension.
Comment: 17 pages. Final version, to appear in Advances in Mathematics
Comment: 17 pages. Final version, to appear in Advances in Mathematics
Externí odkaz:
http://arxiv.org/abs/2310.09084
Autor:
Cristian-Remus Papp, Andreas Seiler, Radu Moț, Anders Sjölund, Elke Hahn, Lazaros E. Georgiadis, Charlotte Navarro, Julie de Bouville, Gavril Marius Berchi
Publikováno v:
Nature Conservation, Vol 57, Iss , Pp 9-16 (2024)
N/a
Externí odkaz:
https://doaj.org/article/13a139037e3d4680bcb582bc4fc98144
Publikováno v:
Journal of Algebraic Combinatorics 59 (2024), no. 4, 787-805
Each connected graded, graded-commutative algebra $A$ of finite type over a field $\Bbbk$ of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the (higher) K
Externí odkaz:
http://arxiv.org/abs/2309.00609
Autor:
Farkas, Gavril
Publikováno v:
Ãpijournal de Géométrie Algébrique, Special volume in honour of Claire Voisin (June 18, 2024) epiga:11658
The Green-Lazarsfeld Secant Conjecture is a generalization of Green's Conjecture on syzygies of canonical curves to the cases of arbitrary line bundles. We establish the Green-Lazarsfeld Secant Conjecture for curves of genus g in all the divisorial c
Externí odkaz:
http://arxiv.org/abs/2307.14157
Publikováno v:
Journal f\"ur die reine und angewandte Mathematik (Crelle's Journal), 814 (2024), 205--240
The resonance varieties are cohomological invariants that are studied in a variety of topological, combinatorial, and geometric contexts. We discuss their scheme structure in a general algebraic setting and introduce various properties that ensure th
Externí odkaz:
http://arxiv.org/abs/2303.07855
Autor:
Farkas, Gavril
The classical De Jonquieres and MacDonald formulas describe the virtual number of divisors with prescribed multiplicities in a linear system on an algebraic curve. We establish an essentially optimal result concerning the enumerative validity of thes
Externí odkaz:
http://arxiv.org/abs/2210.07843
Autor:
Radu Gavril, Petru Romeo Dobrin, Alin Constantin Pînzariu, Mihaela Moscalu, Radu Gheorghe Grigore, Vlad Teodor Iacob, Andreea Cristina Bejenariu, Elena Rodica Popescu, Raluca Gavril, Bogdan Gireadă, Radu Petru Soroceanu, Ovidiu Gavrilovici, Cristinel Ștefănescu
Publikováno v:
Biomedicines, Vol 12, Iss 11, p 2501 (2024)
Background: There are studies that have investigated the association of pro-inflammatory cytokines with depressive disorders, but they often present certain limitations. In this study, two substantial groups of patients were analyzed: 92 patients wit
Externí odkaz:
https://doaj.org/article/54d1adfa263846f1965eb18fe8388632
Autor:
Farkas, Gavril, Larson, Eric
We present an essentially complete solution to the Minimal Resolution Conjecture for general curves, determining the shape of the minimal resolution of general sets of points on a general curve C of degree d>2r-1 in P^r. Our methods also provide a pr
Externí odkaz:
http://arxiv.org/abs/2209.11308