Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Gautam Pai"'
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031319747
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8fd1b1d66e7459c28aca7baf4dd21e3f
https://doi.org/10.1007/978-3-031-31975-4_41
https://doi.org/10.1007/978-3-031-31975-4_41
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200618
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::207db1fa0491d97e23feacb820a1b946
https://doi.org/10.1007/978-3-031-20062-5_20
https://doi.org/10.1007/978-3-031-20062-5_20
Publikováno v:
Image and Vision Computing. 123:104461
Publikováno v:
Handbook of Variational Methods for Nonlinear Geometric Data ISBN: 9783030313500
Extracting meaningful representations from geometric data has prime importance in the areas of computer vision, computer graphics, and image processing. Classical approaches use tools from differential geometry for modeling the problem and employed e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::594e447b2152ce798d97fb235c419a1e
https://doi.org/10.1007/978-3-030-31351-7_16
https://doi.org/10.1007/978-3-030-31351-7_16
Publikováno v:
Journal of Mathematical Imaging and Vision. 60:941-952
The discrete Laplace operator is ubiquitous in spectral shape analysis, since its eigenfunctions are provably optimal in representing smooth functions defined on the surface of the shape. Indeed, subspaces defined by its eigenfunctions have been util
Autor:
Heidi Hackemer, Ambika Gautam Pai
Publikováno v:
Perspectives on Purpose ISBN: 9781351173568
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::be1a56fceaf9e548c9cf0db1896b1b4e
https://doi.org/10.4324/9781351173568-7
https://doi.org/10.4324/9781351173568-7
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030223670
SSVM
SSVM
A deep learning approach to numerically approximate the solution to the Eikonal equation is introduced. The proposed method is built on the fast marching scheme which comprises of two components: a local numerical solver and an update scheme. We repl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::168023fc3a42524fa6b763429f83f9b9
https://doi.org/10.1007/978-3-030-22368-7_4
https://doi.org/10.1007/978-3-030-22368-7_4
Publikováno v:
IEEE Transactions on Image Processing. 24:1536-1548
Many patch-based image denoising methods can be viewed as data-dependent smoothing filters that carry out a weighted averaging of similar pixels. It has recently been argued that these averaging filters can be improved using their doubly stochastic a
Publikováno v:
WACV
This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configuration to train a neural network to solve the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::363f7206b8f15d6e82f62795ba8d6048
http://arxiv.org/abs/1711.06011
http://arxiv.org/abs/1711.06011
Publikováno v:
2016 International Conference on Signal Processing and Communications (SPCOM).
Respiration Rate (RR) is one of the important parameters used for monitoring of neonates in a Neonatal Intensive Care Unit (NICU). In this paper, we propose a contactless method of measuring RR using a camera. Our algorithm exploits the motion of the