Zobrazeno 1 - 10
of 31 907
pro vyhledávání: '"Gaussian curvature"'
Autor:
Hip, Andres Contreras, Gwynne, Ewain
We investigate the notion of curvature in the context of Liouville quantum gravity (LQG) surfaces. We define the Gaussian curvature for LQG, which we conjecture is the scaling limit of discrete curvature on random planar maps. Motivated by this, we s
Externí odkaz:
http://arxiv.org/abs/2406.08674
One of the most important tasks in mathematics and physics is to connect differential geometry and nonlinear differential equations. In the study of nonlinear optics, integrable nonlinear differential equations such as the nonlinear Schr\"odinger equ
Externí odkaz:
http://arxiv.org/abs/2406.03203
Autor:
Dong, Qiujie, Xu, Rui, Wang, Pengfei, Chen, Shuangmin, Xin, Shiqing, Jia, Xiaohong, Wang, Wenping, Tu, Changhe
Despite recent advances in reconstructing an organic model with the neural signed distance function (SDF), the high-fidelity reconstruction of a CAD model directly from low-quality unoriented point clouds remains a significant challenge. In this pape
Externí odkaz:
http://arxiv.org/abs/2404.13420
Autor:
Inoguchi, Junichi, Kobayashi, Shimpei
Weakly complete constant Gaussian curvature $-1
Externí odkaz:
http://arxiv.org/abs/2404.08235
Autor:
Teo, Lee-Peng
The Brioschi formula expresses the Gaussian curvature $K$ in terms of the functions $E, F$ and $G$ in local coordinates of a surface $S$. This implies the Gauss' theorema egregium, which says that the Gaussian curvature just depends on angles, distan
Externí odkaz:
http://arxiv.org/abs/2404.00835
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Suda, Naoya
Giving explicit parametrizations of discrete constant Gaussian curvature surfaces of revolution that are defined from an integrable systems approach, we study Ricci flow for discrete surfaces, and see how discrete surfaces of revolution have a geomet
Externí odkaz:
http://arxiv.org/abs/2312.08113
Autor:
Su, Qibin1 (AUTHOR), Bi, Beizhen1 (AUTHOR), Zhang, Pengyu1 (AUTHOR), Shen, Liang1 (AUTHOR), Huang, Xiaotao1 (AUTHOR), Xin, Qin1 (AUTHOR) xinqin@nudt.edu.cn
Publikováno v:
Remote Sensing. Oct2022, Vol. 14 Issue 19, p4879. 11p.
Autor:
Coulibaly, Patrik
In this paper, we give some simple conditions under which a Hamiltonian stationary Lagrangian submanifold of a K\"ahler-Einstein manifold must have a Euclidean factor or be a fiber bundle over a circle. We also characterize the Hamiltonian stationary
Externí odkaz:
http://arxiv.org/abs/2401.10517