Zobrazeno 1 - 10
of 2 402
pro vyhledávání: '"Gauss–Kronrod quadrature formula"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Numerical Algorithms. 91:1855-1877
In this paper, we consider the Gauss-Kronrod quadrature formulas for a modified Chebyshev weight. Efficient estimates of the error of these Gauss–Kronrod formulae for analytic functions are obtained, using techniques of contour integration that wer
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Miodrag M. Spalević, Lothar Reichel
Publikováno v:
Applied Numerical Mathematics. 165:614-619
Gauss quadrature rules associated with a nonnegative measure with support on (part of) the real axis find many applications in Scientific Computing. It is important to be able to estimate the quadrature error when replacing an integral by an l-node G
Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula
Autor:
R. M. Asharabi, Jürgen Prestin
Publikováno v:
Communications on Pure & Applied Analysis. 19:4143-4158
The use of sampling methods in computing eigenpairs of two-parameter boundary value problems is extremely rare. As far as we know, there are only two studies up to now using the bivariate version of the classical and regularized sampling series. Thes
Publikováno v:
ACM Transactions on Graphics. 38:1-18
In this article, we introduce a surface reconstruction method that has excellent performance despite nonuniformly distributed, noisy, and sparse data. We reconstruct the surface by estimating an implicit function and then obtain a triangle mesh by ex
Autor:
Sotirios E. Notaris
Publikováno v:
BIT Numerical Mathematics. 58:179-198
It is well known that the Gauss–Kronrod quadrature formula does not always exist with real and distinct nodes and positive weights. In 1996, in an attempt to find an alternative to the Gauss–Kronrod formula for estimating the error of the Gauss q
Publikováno v:
European Journal of Mechanics - A/Solids. 69:71-77
A 4-node, 8-DOF non-conforming quadrilateral element with four internal modes, denoted as iQ8, is developed. It takes the four edges' midpoints of the linear element Q4 as the internal virtual nodes, whose shape functions are the same as those of the
Autor:
M. Fakharany, Vera N. Egorova
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
Journal of Computational and Applied Mathematics, 2018, 330, 822-834
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Journal of Computational and Applied Mathematics, 2018, 330, 822-834
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
[EN] In this work a finite difference approach together with a bivariate Gauss¿Hermite quadrature technique is developed for partial-integro differential equations related to option pricing problems on two underlying asset driven by jump-diffusion m
Autor:
Muddun Bhuruth, Deeveya Thakoor
Publikováno v:
Journal of Computational and Applied Mathematics. 330:1-14
Discontinuities in the stock price at ex-dividend dates make it hard to derive mathematically elegant solutions for European-style options with discrete dividends under the piecewise lognormal model. Numerical schemes such as non-recombining trees ar