Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Gauss's lemma (polynomial)"'
Publikováno v:
ACM Transactions on Graphics. 38:1-18
In this article, we introduce a surface reconstruction method that has excellent performance despite nonuniformly distributed, noisy, and sparse data. We reconstruct the surface by estimating an implicit function and then obtain a triangle mesh by ex
Autor:
Victor Reiner, William Messing
Publikováno v:
J. Commut. Algebra 5, no. 2 (2013), 299-307
We prove a version of Gauss's Lemma. It recursively constructs polynomials {c_k} for k=0,1,...,m+n, in Z[a_i,A_i,b_j,B_j] for i=0,...,m, and j=0,1,...,n, having degree at most (m+n choose m) in each of the four variable sets, such that whenever {A_i}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2bc2cacbd060da8c3ca7062b439fb28
http://projecteuclid.org/euclid.jca/1376328034
http://projecteuclid.org/euclid.jca/1376328034
Autor:
Underwood Dudley
Gauss's Lemma is needed to prove the Quadratic Reciprocity Theorem, that for odd primes p and q , (p/q) = (q/p) unless p ≡ q ≡ 3 (mod 4), in which case (p/q) = -(q/p), but it also has other uses. Theorem (Gauss's Lemma) Suppose that p is an odd p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cb2cc62d43e2de3d12ff75d96203dbc4
https://doi.org/10.5948/upo9780883859186.018
https://doi.org/10.5948/upo9780883859186.018
Autor:
William C. Waterhouse
Publikováno v:
Journal of Number Theory. 30(1):105-107
Gauss's Lemma is a theorem on transfers.
Autor:
Jimmy T. Arnold, Philip B. Sheldon
Publikováno v:
Michigan Math. J. 22, iss. 1 (1975), 39-51
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aed3bea5c82de511610d86a1458d8d05
http://projecteuclid.org/euclid.mmj/1029001420
http://projecteuclid.org/euclid.mmj/1029001420