Zobrazeno 1 - 10
of 388
pro vyhledávání: '"Gasiorek, P."'
Autor:
Gasiorek, Sean, Radnović, Milena
We consider the Boltzmann system corresponding to the motion of a billiard with a linear boundary under the influence of a gravitational field. We derive analytic conditions of Cayley's type for periodicity of its trajectories and provide geometric d
Externí odkaz:
http://arxiv.org/abs/2307.04991
Autor:
Gasiorek, Jolanta, Gasiorek, Anna, Babiarczuk, Bartosz, Jones, Walis, Simka, Wojciech, Detyna, Jerzy, Kaleta, Jerzy, Krzak, Justyna
Publikováno v:
Ceramics International, Volume 48, Issue 24, 15 December 2022, Pages 37150-37163
In this paper, we present indirect methods to define the change in the rates of hydrolysis and condensation reactions of a silica oxide network formed of (3-glycidoxypropyl)methyltriethoxysilane (GPTMS) and (3-aminopropyl)triethoxysilane (ApTEOS), wh
Externí odkaz:
http://arxiv.org/abs/2303.14250
Autor:
Anna Golda, Anna Gasiorek, Ewelina Dobosz, Zuzanna Oruba, Richard J. Lamont, Jan Potempa, Joanna Koziel
Publikováno v:
Journal of Oral Microbiology, Vol 16, Iss 1 (2024)
Background Three-dimensional (3D) tissue models bridge the gap between conventional two-dimensional cell cultures and animal models. The aim of this study was to develop an organotypic 3D gingival (OTG) model to provide a tool to investigate bacteria
Externí odkaz:
https://doaj.org/article/3171bda982b540109ca9f533075f28a2
Autor:
Gąsiorek, M.
We continue the Coxeter spectral analysis of finite connected posets $I$ that are non-negative in the sense that their symmetric Gram matrix $G_I:=\frac{1}{2}(C_I + C_I^{tr})\in\mathbb{M}_{m}(\mathbb{Q})$ is positive semi-definite of rank $n\geq 0$,
Externí odkaz:
http://arxiv.org/abs/2205.15813
Autor:
Gąsiorek, Marcin
A poset $I=(\{1,\ldots, n\}, \leq_I)$ is called non-negative if the symmetric Gram matrix $G_I:=\frac{1}{2}(C_I + C_I^{tr})\in\mathbb{M}_n(\mathbb{R})$ is positive semi-definite, where $C_I\in\mathbb{M}_n(\mathbb{Z})$ is the $(0,1)$-matrix encoding t
Externí odkaz:
http://arxiv.org/abs/2205.15032
The aim of this work is to put together two novel concepts from the theory of integrable billiards: billiard ordered games and confocal billiard books. Billiard books appeared recently in the work of Fomenko's school, in particular of V. Vedyushkina.
Externí odkaz:
http://arxiv.org/abs/2111.10913
Autor:
Gasiorek, Sean
We study the stability of periodic trajectories of planar inverse magnetic billiards, a dynamical system whose trajectories are straight lines inside a connected planar domain $\Omega$ and circular arcs outside $\Omega$. Explicit examples are calcula
Externí odkaz:
http://arxiv.org/abs/2106.05676
We consider billiard systems within compact domains bounded by confocal conics on a hyperboloid of one sheet in the Minkowski space. We derive conditions for elliptic periodicity for such billiards. We describe the topology of those billiard systems
Externí odkaz:
http://arxiv.org/abs/2010.07685
Autor:
Gasiorek, Sean, Radnovic, Milena
We consider a billiard problem for compact domains bounded by confocal conics on a hyperboloid of one sheet in the Minkowski space. We show that there are two types of confocal families in such setting. Using an algebro-geometric integration techniqu
Externí odkaz:
http://arxiv.org/abs/2008.06158
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.