Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Gary M. Kuhn"'
Publikováno v:
Medical Physics. 28:445-454
We report on some extensions and further developments of a well-known microcalcification detection algorithm based on adaptive noise equalization. Tissue equivalent phantom images with and without labeled microcalcifications were subjected to this al
Publikováno v:
IEEE Transactions on Neural Networks. 5:153-156
This special issue illustrates both the scientific trends of the early work in recurrent neural networks, and the mathematics of training when at least some recurrent terms of the network derivatives can be non-zero. Herein is a brief description of
Autor:
Raymond L. Watrous, Gary M. Kuhn
Publikováno v:
Neural Computation. 4:406-414
Second-order recurrent networks that recognize simple finite state languages over {0,1}* are induced from positive and negative examples. Using the complete gradient of the recurrent network and sufficient training examples to constrain the definitio
Publikováno v:
Speech Communication. 9:41-48
We attempted multi-talker, connected recognition of the spoken American English letter names b, d, e and v, using a recurrent neural network as the speech recognizer. Network training was based on forward-propagation of unit potentials, instead of ba
Autor:
Christian Darken, Angelo R. Marcantonio, Gary M. Kuhn, Iwan Santoso, Stephen José Hanson, Thomas Petsche
Publikováno v:
Industrial Applications of Neural Networks
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::97f599b683db8aef81627655d56fb9bc
https://doi.org/10.1142/9789812816955_0012
https://doi.org/10.1142/9789812816955_0012
Autor:
Paolo Ienne, Gary M. Kuhn
Publikováno v:
SPIE Proceedings.
Neural networks are non-linear static or dynamical systems that learn to solve problems from examples. Those learning algorithms that require a lot of computing power could benefit from fast dedicated hardware. This paper presents an overview of digi
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gary M. Kuhn
Publikováno v:
The Journal of the Acoustical Society of America. 88:2031-2031
Autor:
Gary M. Kuhn
Publikováno v:
Cortex; a journal devoted to the study of the nervous system and behavior. 9(4)
Summary The phi correlation coefficient is proposed as an index of ear differences in dichotic listening tests. It is proposed specifically for the two-response paradigm, where, as an index of ear difference over all trials, it would be statistically
This paper presents a survey of digital systems to implement neural networks. We consider two basic options for designing these systems: parallel systems with standard digital components and parallel systems with custom processors. We describe many e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8b07154b604d6c47e3a5328fb14dcce
https://infoscience.epfl.ch/record/53091
https://infoscience.epfl.ch/record/53091