Zobrazeno 1 - 10
of 1 149
pro vyhledávání: '"Gardner, David P."'
Predicting the behavior of a magnetically confined fusion plasma over long time periods requires methods that can bridge the difference between transport and turbulent time scales. The nonlinear transport solver, Tango, enables simulations of very lo
Externí odkaz:
http://arxiv.org/abs/2407.03561
The non-equilibrium Green's function gives access to one-body observables for quantum systems. Of particular interest are quantities such as density, currents, and absorption spectra which are important for interpreting experimental results in quantu
Externí odkaz:
http://arxiv.org/abs/2405.08737
Autor:
Balos, Cody J., Day, Marc, Esclapez, Lucas, Felden, Anne M., Gardner, David J., Hassanaly, Malik, Reynolds, Daniel R., Rood, Jon, Sexton, Jean M., Wimer, Nicholas T., Woodward, Carol S.
Many complex systems can be accurately modeled as a set of coupled time-dependent partial differential equations (PDEs). However, solving such equations can be prohibitively expensive, easily taxing the world's largest supercomputers. One pragmatic s
Externí odkaz:
http://arxiv.org/abs/2405.01713
Publikováno v:
2023 IEEE High Performance Extreme Computing Conference (HPEC)
The machine learning explosion has created a prominent trend in modern computer hardware towards low precision floating-point operations. In response, there have been growing efforts to use low and mixed precision in general scientific computing. One
Externí odkaz:
http://arxiv.org/abs/2307.09498
Large-scale multiphysics simulations are computationally challenging due to the coupling of multiple processes with widely disparate time scales. The advent of exascale computing systems exacerbates these challenges, since these enable ever increasin
Externí odkaz:
http://arxiv.org/abs/2211.03293
Publikováno v:
ACM Transactions on Mathematical Software, Volume 49, Issue 2, June 2023, Article No.: 19
We describe the ARKODE library of one-step time integration methods for ordinary differential equation (ODE) initial-value problems (IVPs). In addition to providing standard explicit and diagonally implicit Runge--Kutta methods, ARKODE also supports
Externí odkaz:
http://arxiv.org/abs/2205.14077
Publikováno v:
Proceedings of the 2022 SIAM Conference on Parallel Processing for Scientific Computing
Anderson Acceleration (AA) is a method to accelerate the convergence of fixed point iterations for nonlinear, algebraic systems of equations. Due to the requirement of solving a least squares problem at each iteration and a reliance on modified Gram-
Externí odkaz:
http://arxiv.org/abs/2110.09667
Publikováno v:
Parallel Computing, Volume 108, 2021, 102836, ISSN 0167-8191
As part of the Exascale Computing Project (ECP), a recent focus of development efforts for the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) has been to enable GPU-accelerated time integration in scientific applications at
Externí odkaz:
http://arxiv.org/abs/2011.12984
Publikováno v:
ACM Transactions on Mathematical Software, Volume 48, Issue 3, September 2022, Article No.: 31
In recent years, the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) has been redesigned to better enable the use of application-specific and third-party algebraic solvers and data structures. Throughout this work, we have a
Externí odkaz:
http://arxiv.org/abs/2011.10073
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.