Zobrazeno 1 - 10
of 3 903
pro vyhledávání: '"Garcia-Saez A"'
Autor:
Costa, Emanuele, Perez-Obiol, Axel, Menendez, Javier, Rios, Arnau, Garcia-Saez, Artur, Julia-Diaz, Bruno
The nuclear shell model describes very accurately the structure and dynamics of atomic nuclei. However, the exponential scaling of the basis size with respect to the number of degrees of freedom hampers a direct numerical solution for heavy nuclei. I
Externí odkaz:
http://arxiv.org/abs/2411.06954
Autor:
Pérez-Obiol, Axel, Masot-Llima, Sergi, Romero, Antonio M., Menéndez, Javier, Rios, Arnau, García-Sáez, Artur, Juliá-Díaz, Bruno
Simulating physical systems with variational quantum algorithms is a well-studied approach, but it is challenging to implement in current devices due to demands in qubit number and circuit depth. We show how limited knowledge of the system, namely th
Externí odkaz:
http://arxiv.org/abs/2409.04510
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In recent years, analog quantum simulators have reached unprecedented quality, both in qubit numbers and coherence times. Most of these simulators natively implement Ising-type Hamiltonians, which limits the class of models that can be simulated effi
Externí odkaz:
http://arxiv.org/abs/2406.06378
Achieving dense connectivities is a challenge for most quantum computing platforms today, and a particularly crucial one for the case of quantum annealing applications. In this context, we present a scalable architecture for quantum annealers describ
Externí odkaz:
http://arxiv.org/abs/2404.06861
Tensor Networks are graph representations of summation expressions in which vertices represent tensors and edges represent tensor indices or vector spaces. In this work, we present EinExprs.jl, a Julia package for contraction path optimization that o
Externí odkaz:
http://arxiv.org/abs/2403.18030
Autor:
Masot-Llima, Sergi, Garcia-Saez, Artur
Efficient simulation of quantum computers relies on understanding and exploiting the properties of quantum states. This is the case for methods such as tensor networks, based on entanglement, and the tableau formalism, which represents stabilizer sta
Externí odkaz:
http://arxiv.org/abs/2403.08724
We propose a novel Reinforcement Learning (RL) method for optimizing quantum circuits using graph-theoretic simplification rules of ZX-diagrams. The agent, trained using the Proximal Policy Optimization (PPO) algorithm, employs Graph Neural Networks
Externí odkaz:
http://arxiv.org/abs/2312.11597
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pérez-Obiol, A., Masot-Llima, S., Romero, A. M., Menéndez, J., Rios, A., García-Sáez, A., Juliá-Díaz, B.
Publikováno v:
The European Physical Journal A 59, 240 (2023)
Quantum entanglement offers a unique perspective into the underlying structure of strongly-correlated systems such as atomic nuclei. In this paper, we use quantum information tools to analyze the structure of light and medium-mass berillyum, oxygen,
Externí odkaz:
http://arxiv.org/abs/2307.05197