Zobrazeno 1 - 10
of 1 611
pro vyhledávání: '"Garcia, J. I"'
Let $S\subseteq \mathbb N^p$ be a semigroup, any $P\subseteq S$ is an ideal of $S$ if $P+S\subseteq P$, and an $I(S)$-semigroup is the affine semigroup $P\cup \{0\}$, with $P$ an ideal of $S$. We characterise the $I(S)$-semigroups and the ones that a
Externí odkaz:
http://arxiv.org/abs/2405.14648
This work delves into the {\it quotient of an affine semigroup by a positive integer}, exploring its intricate properties and broader implications. We unveil an {\it associated tree} that serves as a valuable tool for further analysis. Moreover, we s
Externí odkaz:
http://arxiv.org/abs/2402.09159
Let $S$ and $\Delta$ be numerical semigroups. A numerical semigroup $S$ is an $\mathbf{I}(\Delta)$-{\it semigroup} if $S\backslash \{0\}$ is an ideal of $\Delta$. We will denote by $\mathcal{J}(\Delta)=\{S \mid S \text{ is an $\mathbf{I}(\Delta)$-sem
Externí odkaz:
http://arxiv.org/abs/2202.00920
A sumset semigroup is a non-cancellative commutative monoid obtained from the sumset of finite non-negative integer sets. In this work, an algorithm for computing the ideals associated with some sumset semigroups is provided. Using these ideals, we s
Externí odkaz:
http://arxiv.org/abs/2102.04100
Let $A \subset {\mathbb Z}$ be a finite subset. We denote by $\mathcal{B}(A)$ the set of all integers $n \ge 2$ such that $|nA| > (2n-1)(|A|-1)$, where $nA=A+\cdots+A$ denotes the $n$-fold sumset of $A$. The motivation to consider $\mathcal{B}(A)$ st
Externí odkaz:
http://arxiv.org/abs/2011.09187
Weierstrass semigroups are well-known along the literature. We present a new family of non-Weierstrass semigroups which can be written as an intersection of Weierstrass semigroups. In addition, we provide methods for calculating non-Weierstrass semig
Externí odkaz:
http://arxiv.org/abs/2005.12896
Publikováno v:
Mathematics 2021, 9, 1370
In this work we present a new class of numerical semigroups called GSI-semigroups. We see the relations between them and others families of semigroups and we give explicitly their set of gaps. Moreover, an algorithm to obtain all the GSI-semigroups u
Externí odkaz:
http://arxiv.org/abs/2003.13381
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $\mathcal C \subset \mathbb N^p$ be a finitely generated integer cone and $S\subset \mathcal C$ be an affine semigroup such that the real cones generated by $\mathcal C$ and by $S$ are equal. The semigroup $S$ is called $\mathcal C$-semigroup if
Externí odkaz:
http://arxiv.org/abs/1907.03276