Zobrazeno 1 - 10
of 343
pro vyhledávání: '"Garbaczewski, P."'
Autor:
Garbaczewski, P., Zaba, M.
Publikováno v:
Phys. Rev E 110 (1), 014127 , (2024)
We analyze the relaxation dynamics of Feynman-Kac path integral kernel functions in terms of branching diffusion processes with killing. This sheds new light on the admissible path-wise description of the relaxation to equilibrium for conditioned Bro
Externí odkaz:
http://arxiv.org/abs/2403.07164
Autor:
Garbaczewski, P., Żaba, M.
Publikováno v:
Journal of Statistical Physics 191 (6); 65 (2024)
The nonequilibrium Fokker-Planck dynamics with a non-conservative drift field, in dimension $N\geq 2$, can be related with the non-Hermitian quantum mechanics in a real scalar potential $V$ and in a purely imaginary vector potential -$iA$ of real amp
Externí odkaz:
http://arxiv.org/abs/2302.10154
We suggest a method for calculating electronic spectra in ordered and disordered semiconductor structures (superlattices) forming double quantum wells (QW). In our method, we represent the solution of Schr\"odinger equation for QW potential with the
Externí odkaz:
http://arxiv.org/abs/2203.05295
Autor:
Garbaczewski, Piotr, Żaba, Mariusz
Publikováno v:
J. Phys A: Math. Theor. 55 (30), 3005005,(2022)
We discuss an impact of various (path-wise) reflection-from-the barrier scenarios upon confining properties of a paradigmatic family of symmetric $\alpha $-stable L\'{e}vy processes, whose permanent residence in a finite interval on a line is secured
Externí odkaz:
http://arxiv.org/abs/2201.09582
Publikováno v:
Acta Physica Polonica B 53, 3-A2 (2022)
Relaxation properties (specifically time-rates) of the Smoluchowski diffusion process on a line, in a confining potential $ U(x) \sim x^m$, $m=2n \geq 2$, can be spectrally quantified by means of the affiliated Schr\"{o}dinger semigroup $\exp (-t\hat
Externí odkaz:
http://arxiv.org/abs/2104.11905
Publikováno v:
Annales Universitatis Paedagogicae Cracoviensis. Studia de Cultura, Vol 15, Iss 3, Pp 117-125 (2023)
Externí odkaz:
https://doaj.org/article/ce1365b29bed42deb9655fdbf0556d38
Levy flights in steep potential wells: Langevin modeling versus direct response to energy landscapes
Autor:
Garbaczewski, P., Zaba, M.
Publikováno v:
Acta Phys. POl. B 51 (10), 1965-2009, (2020)
We investigate the non-Langevin relative of the L\'{e}vy-driven Langevin random system, under an assumption that both systems share a common (asymptotic, stationary, steady-state) target pdf. The relaxation to equilibrium in the fractional Langevin-F
Externí odkaz:
http://arxiv.org/abs/2007.03725
Autor:
Garbaczewski, Piotr, Zaba, Mariusz
Publikováno v:
J. Phys. A: Math. Theor. 53 (2020) 315001 (39pp)
We investigate signatures of convergence for a sequence of diffusion processes on a line, in conservative force fields stemming from superharmonic potentials $U(x)\sim x^m$, $m=2n \geq 2$. This is paralleled by a transformation of each $m$-th diffusi
Externí odkaz:
http://arxiv.org/abs/1906.06694
Autor:
Garbaczewski, P., Stephanovich, V. A.
Publikováno v:
Phys. Rev. E 99, 042126 (2019)
The fractional Laplacian $(- \Delta)^{\alpha /2}$, $\alpha \in (0,2)$ has many equivalent (albeit formally different) realizations as a nonlocal generator of a family of $\alpha $-stable stochastic processes in $R^n$. On the other hand, if the proces
Externí odkaz:
http://arxiv.org/abs/1810.07028
Autor:
Garbaczewski, Piotr
Publikováno v:
Acta Phys. Pol. B 49 (2), 145-169, (2018)
We address L\'{e}vy-stable stochastic processes in bounded domains, with a focus on a discrimination between inequivalent proposals for what a boundary data-respecting fractional Laplacian (and thence the induced random process) should actually be. V
Externí odkaz:
http://arxiv.org/abs/1802.09853