Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Garay, Mauricio"'
Autor:
Garay, Mauricio, van Straten, Duco
Power series with rational functions as coefficients are ubiquitous in mathematics, particularly so in number theory and mathematical physics. In this paper we introduce a class of such series that we call meandromorphic. Under appropriate Diophantin
Externí odkaz:
http://arxiv.org/abs/2410.04583
Autor:
Garay, Mauricio, van Straten, Duco
It is known after the works of Mahler, Kleinbock, Margulis, Sprind\v{z}uk and others that very well approximated numbers on a manifold form a zero measure set, assuming non-degeneracy conditions. These non-degeneracy conditions are, in many applicati
Externí odkaz:
http://arxiv.org/abs/2407.21495
Autor:
Villanueva, V., Herrera-Camus, R., Gonzalez-Lopez, J., Aravena, M., Assef, R. J., Baeza-Garay, Mauricio, Barcos-Muñoz, L., Bovino, S., Bowler, R. A. A., da Cunha, E., De Looze, I., Diaz-Santos, T., Ferrara, A., Foerster-Schreiber, N., Algera, H., Iked, R., Killi, M., Mitsuhashi, I., Naab, T., Relano, M., Spilker, J., Solimano, M., Palla, M., Price, S. H., Posses, A., Tadaki, K., Telikova, K., Übler, H.
Publikováno v:
A&A 691, A133 (2024)
We present new $\lambda_{\rm rest}=77$ $\mu$m dust continuum observations from the ALMA of HZ10 (CRISTAL-22), a dusty main-sequence galaxy at $z$=5.66 as part of the [CII] Resolved Ism in STar-forming Alma Large program, CRISTAL. The high angular res
Externí odkaz:
http://arxiv.org/abs/2407.09681
Autor:
Garay, Mauricio, van Straten, Duco
When a singular point of a vector field passes through resonance, a formal invariant cone appears. In the seventies, Pyartli proved that for $(-1,1)$-resonance the cone is in fact analytic and is the degeneration of a family of invariant cylinders. I
Externí odkaz:
http://arxiv.org/abs/2011.06802
Autor:
Garay, Mauricio, van Straten, Duco
We introduce a sheaf theoretic viewpoint on functional analysis designed for infinite dimensional Lie group actions. We develop functional calculus for Banach valued functors and, in particular, prove the existence of an exponential map for a certain
Externí odkaz:
http://arxiv.org/abs/2010.02320
Autor:
Garay, Mauricio, van Straten, Duco
We study a new type of normal form at a critical point of an analytic Hamiltonian. Under a Bruno condition on the frequency, we prove a convergence statement to the normal form. Using this result, we prove the Herman invariant tori conjecture namely
Externí odkaz:
http://arxiv.org/abs/1909.06053
Autor:
Garay, Mauricio, van Straten, Duco
We apply the general normal form theorems in Kolmogorov spaces to three classical cases: deformations of hypersurface singularities, normal forms of vector fields and invariant tori in Hamiltonian systems.
Externí odkaz:
http://arxiv.org/abs/1810.09423
Autor:
Garay, Mauricio, van Straten, Duco
This is part II of our book on KAM theory. We start by defining functorial analysis and then switch to the particular case of Kolmogorov spaces. We develop functional calculus based on the notion of local operators. This allows to define the exponent
Externí odkaz:
http://arxiv.org/abs/1809.03492
Autor:
Garay, Mauricio, van Straten, Duco
This is part I of a book on KAM theory. We start from basic symplectic geometry, review Darboux-Weinstein theorems action angle coordinates and their global obstructions. Then we explain the content of Kolmogorov's invariant torus theorem and make it
Externí odkaz:
http://arxiv.org/abs/1805.11859
The KAM (Kolmogorov-Arnold-Moser) theorem guarantees the stability of quasi-periodic invariant tori by perturbation in some Hamiltonian systems. Michel Herman proved a similar result for quasi-periodic motions, with $k$-dimensional involutive manifol
Externí odkaz:
http://arxiv.org/abs/1805.09201