Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Gaohua TANG"'
Publikováno v:
Journal of Mathematics, Vol 2023 (2023)
Let Fq be a finite field of odd characteristic and 2ν+δ≥2 be an integer with δ=0,1, or 2. The orthogonal inner product graph Oi2ν+δ,q over Fq is defined, and a class of subgroup of the automorphism groups of Oi2ν+δ,q is determined. We show t
Externí odkaz:
https://doaj.org/article/2a35ed4b61554d37af41e6ba0a6d8897
Publikováno v:
Communications in Algebra. 50:3390-3402
Autor:
Gaohua Tang, Jin Xie
Publikováno v:
Algebra Colloquium. 28:689-700
Let [Formula: see text] be a commutative ring with identity and [Formula: see text] an ideal of [Formula: see text]. We introduce and study the [Formula: see text]-weak global dimension [Formula: see text] of the factor ring [Formula: see text]. Let
Publikováno v:
Communications in Algebra. 49:1717-1724
We give the necessary and sufficient conditions for an n × n matrix over an integral domain to be a sum of involutions and, respectively, a sum of tripotents. We determine the integral domains over...
Publikováno v:
Algebra Colloquium. 27:821-830
A ring is said to satisfy the strong 2-sum property if every element is a sum of two commuting units. In this note, we present some sufficient or necessary conditions for the matrix ring over a commutative local ring to have the strong 2-sum property
Publikováno v:
Communications in Contemporary Mathematics. 25
An element [Formula: see text] of a ring [Formula: see text] is called a quasi-idempotent if [Formula: see text] for some central unit [Formula: see text] of [Formula: see text], or equivalently, [Formula: see text], where [Formula: see text] is a ce
Publikováno v:
Finite Fields and Their Applications. 59:238-245
Let G be a finite abelian group and F q 2 be a finite field of order q 2 . The conjugate involution ⁎ is defined by ⁎ : F q 2 G → F q 2 G , ∑ r g g ↦ ∑ r g q g − 1 . In this paper, we completely characterize when a group algebra F q 2 G
Publikováno v:
Proceedings of the American Mathematical Society, 1990 Sep 01. 110(1), 39-44.
Externí odkaz:
https://www.jstor.org/stable/2048238
Autor:
Gaohua Tang, Yiqiang Zhou
Publikováno v:
Journal of Algebra and Its Applications. 21
A unit-picker is a map [Formula: see text] that associates to every ring [Formula: see text] a well-defined set [Formula: see text] of central units in [Formula: see text] which contains [Formula: see text] and is invariant under isomorphisms of ring
Publikováno v:
Czechoslovak Mathematical Journal. 69:197-205
An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson’s lemma does not hold for nil-clean