Zobrazeno 1 - 10
of 116
pro vyhledávání: '"Gao, Wenwu"'
The paper aims at proposing an efficient and stable quasi-interpolation based method for numerically computing the Helmholtz-Hodge decomposition of a vector field. To this end, we first explicitly construct a matrix kernel in a general form from poly
Externí odkaz:
http://arxiv.org/abs/2412.04600
The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our quasi-interpolation as a two-step procedure. In the first step, we approximate a target function by a purpo
Externí odkaz:
http://arxiv.org/abs/2409.14278
We propose and study a new quasi-interpolation method on spheres featuring the following two-phase construction and analysis. In Phase I, we analyze and characterize a large family of zonal kernels (e.g., the spherical version of Poisson kernel, Gaus
Externí odkaz:
http://arxiv.org/abs/2408.14803
The paper proposes a novel and efficient quasi-interpolation scheme with high approximation order for periodic function approximation over tori. The resulting quasi-interpolation takes the form of Schoenberg's tensor-product generalized Gaussian kern
Externí odkaz:
http://arxiv.org/abs/2407.21283
Publikováno v:
In Applied and Computational Harmonic Analysis September 2022 60:471-488
Autor:
Gao, Wenwu, Sun, Zhengjie
Publikováno v:
In Applied Numerical Mathematics December 2019 146:276-290
Autor:
Sun, Zhengjie, Gao, Wenwu
Publikováno v:
In Applied Mathematical Modelling May 2018 57:179-191
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In International Immunopharmacology November 2017 52:318-323
Autor:
Sun, Zhengjie, Gao, Wenwu
Publikováno v:
In Applied Numerical Mathematics September 2017 119:115-125