Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Gandarias, María L."'
Publikováno v:
Commun. Nonlin. Sci. Numer. Simul. 124 (2023) 107315 (17 pages)
Westervelt's equation is a nonlinear wave equation that is widely used to model the propagation of sound waves in a compressible medium, with one important application being ultra-sound in human tissue. Two fundamental aspects of this equation -- sym
Externí odkaz:
http://arxiv.org/abs/2212.06900
Publikováno v:
Chaos, Solitons and Fractals 170 (2023), 113360 (13 pages)
Two aspects of a widely used 1D model of blood flow in a single blood vessel are studied by symmetry analysis, where the variables in the model are the blood pressure and the cross-section area of the blood vessel. As one main result, all travelling
Externí odkaz:
http://arxiv.org/abs/2212.12310
Publikováno v:
J. Computational and Applied Math. (2023), 115412
A generalization of the KP equation involving higher-order dispersion is studied. This equation appears in several physical applications. As new results, the Lie point symmetries are obtained and used to derive conservation laws via Noether's theorem
Externí odkaz:
http://arxiv.org/abs/2211.03904
All low-order conservation laws are found for a general class of nonlinear wave equations in one dimension with linear damping which is allowed to be time-dependent. Such equations arise in numerous physical applications and have attracted much atten
Externí odkaz:
http://arxiv.org/abs/2208.08026
Publikováno v:
In Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena February 2025 191
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation September 2023 124
Publikováno v:
In Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena May 2023 170
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Dynamical Systems, Differential Equations and Applications (2015), 29-37. Proceedings of the 10th AIMS Conference (Madrid, 2015)
A nonlinearly generalized Camassa-Holm equation, depending an arbitrary nonlinearity power $p \neq 0$, is considered. This equation reduces to the Camassa-Holm equation when $p=1$ and shares one of the Hamiltonian structures of the Camassa-Holm equat
Externí odkaz:
http://arxiv.org/abs/1609.02473
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.