Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Gamba, Jonah"'
Autor:
TSUDA, Yusuke, GAMBA, Jonah
Publikováno v:
IEICE transactions on fundamentals of electronics, communications and computer sciences. (1):248-259
An efficient adaptation technique of the delay is introduced for accomplishing more accurate adaptive linear equalization of nonminimum phase channels. It is focused that the filter structure and adaptation procedure of the adaptive Butler-Cantoni (A
Autor:
GAMBA, Jonah
Publikováno v:
IEICE transactions on fundamentals of electronics, communications and computer sciences. (4):978-987
This paper addresses the estimation of time delay between two spatially separated noisy signals by system identification modeling with the input and output corrupted by additive white Gaussian noise. The proposed method is based on a modified adaptiv
Autor:
GAMBA, Jonah
Publikováno v:
IEICE transactions on fundamentals of electronics, communications and computer sciences. (3):702-711
High-resolution spectrum estimation techniques have been extensively studied in recent publications. Knowledge of the noise variance is vital for spectrum estimation from noise-corrupted observations. This paper presents the use of noise compensation
Autor:
GAMBA, Jonah
Publikováno v:
IEICE transactions on fundamentals of electronics, communications and computer sciences. (1):270-274
The processing of noise-corrupted signals is a common problem in signal processing applications. In most of the cases, it is assumed that the additive noise is white Gaussian and that the constant noise variance is either available or can be easily m
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Courage Kamusoko, Gamba, Jonah
Publikováno v:
ISPRS International Journal of Geo-Information; Jun2015, Vol. 4 Issue 2, p447-470, 24p
Autor:
Gamba, Jonah, Shimamura, Tetsuya
Publikováno v:
IEEE Signal Processing Letters; Sep2005, Vol. 12 Issue 9, p641-644, 4p, 6 Graphs