Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Galia Dafni"'
Publikováno v:
Proceedings of the American Mathematical Society. 149:4341-4354
We derive bounds on the mean oscillation of the decreasing rearrangement f ∗ f^* on R + \mathbb {R}_+ in terms of the mean oscillation of f f on a suitable measure space X X . In the special case of a doubling metric measure space, the bound depend
Autor:
Almaz Butaev, Galia Dafni
Publikováno v:
The Journal of Geometric Analysis. 31:6892-6921
We consider various definitions of functions of vanishing mean oscillation on a domain $$\Omega \subset {{{\mathbb {R}}}^n}$$ . If the domain is uniform, we show that there is a single extension operator which extends functions in these spaces to fun
Publikováno v:
The Journal of Geometric Analysis. 31:5740-5765
We consider the problem of the boundedness of maximal operators on $$\mathrm {BMO}_{}^{}$$ on shapes in $${\mathbb {R}}^n$$ . We prove that for bases of shapes with an engulfing property, the corresponding maximal function is bounded from $$\mathrm {
Autor:
Ryan Gibara, Galia Dafni
Publikováno v:
Contemporary Mathematics. :1-33
Publikováno v:
Nonlinear Analysis. 225:113110
Publikováno v:
Analysis and Geometry in Metric Spaces, Vol 8, Iss 1, Pp 335-362 (2020)
We study the space BMO𝒢 (𝕏) in the general setting of a measure space 𝕏 with a fixed collection 𝒢 of measurable sets of positive and finite measure, consisting of functions of bounded mean oscillation on sets in 𝒢. The aim is to see ho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::190bc9571b3e98a6480d6f161e945d8b
http://arxiv.org/abs/2012.04110
http://arxiv.org/abs/2012.04110
Autor:
Galia Dafni, Elijah Liflyand
Publikováno v:
Complex Analysis and its Synergies. 5
We prove characterizations of Goldberg’s local Hardy space $$h^1({\mathbb {R}})$$ by means of a local Hilbert transform and a molecular decomposition. We use this decomposition to prove a version of Hardy’s inequality for the Fourier transform of
Autor:
Stephen Wainger, Anthony W. Knapp, Christopher D. Sogge, William Beckner, Carlos E. Kenig, Vickie Kearn, Alexander Nagel, Loredana Lanzani, Terence Tao, Fulvio Ricci, Harold Widom, Linda Rothschild, Rami Shakarchi, Lillian B. Pierce, Alexandru D. Ionescu, Steven G. Krantz, Karen Stein, Duong Phong, Galia Dafni, Charles Fefferman, Jeremy Stein
Publikováno v:
Notices of the American Mathematical Society. 68:1
We study a function space $JN_p$ based on a condition introduced by John and Nirenberg as a variant of BMO. It is known that $L^p\subset JN_{p}\subsetneq L^{p,\infty}$, but otherwise the structure of $JN_p$ is largely a mystery. Our first main result
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a97b7f769269c848db4be9574309b5c
http://hdl.handle.net/10138/315207
http://hdl.handle.net/10138/315207
Publikováno v:
Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1) ISBN: 9783319309590
We prove some nonhomogeneous versions of the div-curl lemma in the context of weighted spaces. Namely, assume the vector fields \(\mathbf{V},\mathbf{W}\!\!: \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}\), along with their distributional divergence and cu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0f340f559e92de7b67eeeacd843a9070
https://doi.org/10.1007/978-3-319-30961-3_8
https://doi.org/10.1007/978-3-319-30961-3_8