Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Galeotti, Lorenzo"'
Finite Turing computation has a fundamental symmetry between inputs, outputs, programs, time, and storage space. Standard models of transfinite computational break this symmetry; we consider ways to recover it and study the resulting model of computa
Externí odkaz:
http://arxiv.org/abs/2302.06444
We consider a randomised version of Kleene's realisability interpretation of intuitionistic arithmetic in which computability is replaced with randomised computability with positive probability. In particular, we show that (i) the set of randomly rea
Externí odkaz:
http://arxiv.org/abs/2101.12656
We introduce a realisability semantics for infinitary intuitionistic set theory that is based on Ordinal Turing Machines (OTMs). We show that our notion of OTM-realisability is sound with respect to certain systems of infinitary intuitionistic logic,
Externí odkaz:
http://arxiv.org/abs/2009.12172
Bagaria and V\"a\"an\"anen developed a framework for studying the large cardinal strength of downwards L\"owenheim-Skolem theorems and related set theoretic reflection properties. The main tool was the notion of symbiosis, originally introduced by th
Externí odkaz:
http://arxiv.org/abs/2007.14718
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
GALEOTTI, LORENZO, LÖWE, BENEDIKT
Publikováno v:
The Bulletin of Symbolic Logic, 2022 Jun 01. 28(2), 182-206.
Externí odkaz:
https://www.jstor.org/stable/27139153
Autor:
Carl, Merlin, Galeotti, Lorenzo
In this paper, we study strengthenings of Infinite Times Blum-Shub-Smale-Machines (ITBMs) that were proposed by Seyfferth in [14] and Welch in [15] obtained by modifying the behaviour of the machines at limit stages. In particular, we study Strong In
Externí odkaz:
http://arxiv.org/abs/2001.07133
Publikováno v:
In Annals of Pure and Applied Logic June 2023 174(6)
Autor:
Galeotti, Lorenzo, Nobrega, Hugo
In this paper we use infinitary Turing machines with tapes of length $\kappa$ and which run for time $\kappa$ as presented, e.g., by Koepke \& Seyfferth, to generalise the notion of type two computability to $2^{\kappa}$, where $\kappa$ is an uncount
Externí odkaz:
http://arxiv.org/abs/1704.02884
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.