Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Gal, Światosław R."'
Autor:
Gal, Światosław R., Kędra, Jarek
We introduce a refinement of bounded cohomology and prove that the suitable comparison homomorphisms vanish for an amenable group. We investigate in this context Thompson's group F and provide further evidence towards its amenability. We provide a so
Externí odkaz:
http://arxiv.org/abs/2208.03168
We introduce a two-parameter function $\phi_{q_+,q_-}$ on the infinite hyperoctahedral group, which is a bivariate refinement of the reflection length keeping track of the long and the short reflections separately. We show that this signed reflection
Externí odkaz:
http://arxiv.org/abs/2104.14530
Publikováno v:
In Journal of Functional Analysis 1 March 2023 284(5)
We prove that finite index subgroups in S-arithmetic Chevalley groups are bounded.
Comment: 8 pages
Comment: 8 pages
Externí odkaz:
http://arxiv.org/abs/1808.06376
A new class of positive definite functions related to colour-length function on arbitrary Coxeter group is introduced. Extensions of positive definite functions, called the Riesz-Coxeter product, from the Riesz product on the Rademacher (Abelian Coxe
Externí odkaz:
http://arxiv.org/abs/1704.06845
Publikováno v:
Trans. Amer. Math. Soc. Ser. B 4 (2017), 110-130
We prove that groups acting boundedly and order-primitively on linear orders or acting extremly proximality on a Cantor set (the class including various Higman-Thomson groups and Neretin groups of almost automorphisms of regular trees, also called gr
Externí odkaz:
http://arxiv.org/abs/1602.08740
Publikováno v:
Annales Math\'ematiques Blaise Pascal, Tome 27 (2020) no. 1, pp. 125-130
Let R be a class of groups closed under taking semidirect products with finite kernel and fully residually R-groups. We prove that R contains all R-by-{finitely generated residually finite} groups. It follows that a semidirect product of a finitely g
Externí odkaz:
http://arxiv.org/abs/1312.7682
Publikováno v:
Glasgow Mathematical Journal, 58 (2016), no. 1, 153--176
We study biinvariant word metrics on groups. We provide an efficient algorithm for computing the biinvariant word norm on a finitely generated free group and we construct an isometric embedding of a locally compact tree into the biinvariant Cayley gr
Externí odkaz:
http://arxiv.org/abs/1310.2921
Publikováno v:
Abhandlungen aus dem Mathematischen Seminar der Universit\"at Hamburg, 2013, Volume 83, Issue 2, pp 219--230
The Killing form \beta\ of a real (or complex) semisimple Lie group G is a left-invariant pseudo-Riemannian (or, respectively, holomorphic) Einstein metric. Let \Omega\ denote the multiple of its curvature operator, acting on symmetric 2-tensors, wit
Externí odkaz:
http://arxiv.org/abs/1304.2801
Publikováno v:
Indiana University Mathematics Journal 63 (2014), no. 1, pp. 165-212
The set E of Levi-Civita connections of left-invariant pseudo-Riemannian Einstein metrics on a given semisimple Lie group always includes D, the Levi-Civita connection of the Killing form. For the groups SU(l,j) (or SL(n,R), or SL(n,C) or, if n is ev
Externí odkaz:
http://arxiv.org/abs/1209.6084