Zobrazeno 1 - 10
of 309
pro vyhledávání: '"Gabrovsek A"'
Autor:
Gabrovšek, Boštjan, Žerovnik, Janez
Petford and Welsh introduced a sequential heuristic algorithm for (approximately) solving the NP-hard graph coloring problem. The algorithm is based on the antivoter model and mimics the behaviour of a physical process based on a multi-particle syste
Externí odkaz:
http://arxiv.org/abs/2309.11961
Publikováno v:
Discrete Contin. Dyn. Syst. Ser. S 16:6 (2023), 1401-1413
In this paper, a class of nonlocal fractional Dirichlet problems is studied. By using a variational principle due to Ricceri (whose original version was given in J. Comput. Appl. Math. 113 (2000), 401-410), the existence of infinitely many weak solut
Externí odkaz:
http://arxiv.org/abs/2305.09609
Autor:
Gabrovšek, Boštjan, Gügümcü, Neslihan
In this paper, we extend the definition of a knotoid that was introduced by Turaev, to multi-linkoids that consist of a number of knot and knotoid components. We study invariants of multi-linkoids that lie in a closed orientable surface, namely the K
Externí odkaz:
http://arxiv.org/abs/2204.11234
Autor:
Blatnik, Matej a, ⁎, Gabrovšek, Franci a, Ravbar, Nataša a, Frantar, Peter b, Gill, Laurence W. c
Publikováno v:
In Journal of Hydrology: Regional Studies February 2024 51
Autor:
Pivetta, Tommaso a, ⁎, Braitenberg, Carla a, Gabrovšek, Franci b, Gabriel, Gerald c, d, Meurers, Bruno e
Publikováno v:
In Journal of Hydrology February 2024 629
Autor:
Gabrovsek, Bostjan
Publikováno v:
Studies in Applied Mathematics, 2021
We equip a knot $K$ with a set of colored bonds, that is, colored intervals properly embedded into $\mathbb{R}^3 \setminus K$. Such a construction can be viewed as a structure that topologically models a closed protein chain including any type of bri
Externí odkaz:
http://arxiv.org/abs/1910.04398
Publikováno v:
Nonlinear Analysis, vol. 186, 2019, pages 33-54
In this paper, we consider the following nonlinear Kirchhoff type problem: \[ \left\{\begin{array}{lcl}-\left(a+b\displaystyle\int_{\mathbb{R}^3}|\nabla u|^2\right)\Delta u+V(x)u=f(u), & \textrm{in}\,\,\mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{arr
Externí odkaz:
http://arxiv.org/abs/1907.01888
Autor:
Gabrovšek, Boštjan, Horvat, Eva
We present a reduced Burau-like representation for the mixed braid group on one strand representing links in lens spaces and show how to calculate the Alexander polynomial of a link directly from the mixed braid.
Externí odkaz:
http://arxiv.org/abs/1901.01191
Autor:
Gabrovšek, Boštjan
Publikováno v:
Bull. Austral. Math. Soc. 88:3 (2013), 407-422
Khovanov homology, an invariant of links in $\mathbb{R}^3$, is a graded homology theory that categorifies the Jones polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial. Asaeda, Przytycki and Sikora gen
Externí odkaz:
http://arxiv.org/abs/1809.03540
Autor:
Gabrovšek, Boštjan, Horvat, Eva
In this survey we summarize results regarding the Kauffman bracket, HOMFLYPT, Kauffman 2-variable and Dubrovnik skein modules, and the Alexander polynomial of links in lens spaces, which we represent as mixed link diagrams. These invariants generaliz
Externí odkaz:
http://arxiv.org/abs/1808.05241