Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Gabriella Hajdu"'
Publikováno v:
Mathematics, Vol 11, Iss 18, p 3992 (2023)
An important concern with regard to the ensembles of algorithms is that using the individually optimal parameter settings of the members does not necessarily maximize the performance of the ensemble itself. In this paper, we propose a novel evaluatio
Externí odkaz:
https://doaj.org/article/4c6b60adb365400c90d93e3dfd9a593c
Autor:
Gabriella Hajdu, Lajos Hajdu
Publikováno v:
Aequationes mathematicae. 75:65-74
We consider Hosszu’s famous functional equation f(x) + f(y) = f(xy) + f(x + y − xy). We completely describe the set of functions $$f : R \rightarrow {\mathbb{A}}$$ satisfying this equation, where R is the set of the Gaussian or Eisenstein integer
Autor:
Gabriella Hajdu, Lajos Hajdu
Publikováno v:
Acta Mathematica Hungarica. 112:143-155
We show that a well-known identity of Ramanujan admits only a bounded number of solutions over general finitely generated domains. The bound is explicit and uniform in the sense that it depends only on the dimensions of the domains involved. Our meth
Autor:
Gabriella Hajdu, Zoltán Daróczy
Publikováno v:
Aequationes mathematicae. 69:58-67
The aim of this paper is to prove an extension theorem for weighted quasi-arithmetic means.
Publikováno v:
Colloquium Mathematicum. 95:153-161
Autor:
Zoltán Daróczy, Gabriella Hajdu
Publikováno v:
Acta Mathematica Hungarica. 82:1-9
In this paper our aim is to determine all the solutions of the functional equation f(a + b + c) + f(b + c + d) + f(a - d) = f(a + b + d) + f(a + c + d) + f(b - c), where a, b, c, d ∈ Zsatisfy ad = bc. This equation is a generalization of one of the
Autor:
Zoltán Daróczy, Gabriella Hajdu
Publikováno v:
Publicationes Mathematicae Debrecen. 53:281-291
Autor:
Gabriella Hajdu
Publikováno v:
Functional Equations — Results and Advances ISBN: 9781441952103
Let I ⊂ ℝ be an open interval, and CM(I) denote the set of all continuous and strictly monotonic real functions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9b1786dd86baa6c588f644cfbafa6749
https://doi.org/10.1007/978-1-4757-5288-5_15
https://doi.org/10.1007/978-1-4757-5288-5_15