Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Gabriel J. Lord"'
Autor:
Cónall Kelly, Gabriel J. Lord
Publikováno v:
Applied Numerical Mathematics, 186, pp. 252-273
Applied Numerical Mathematics, 186, 252-273
Applied Numerical Mathematics, 186, 252-273
We propose a new splitting method for strong numerical solution of the Cox-Ingersoll-Ross model. For this method, applied over both deterministic and adaptive random meshes, we prove a uniform moment bound and strong error results of order $1/4$ in $
Autor:
Cónall Kelly, Gabriel J. Lord
Publikováno v:
Numerical Algorithms, 89, 721-747
Numerical Algorithms, 89, pp. 721-747
Numerical Algorithms, 89, pp. 721-747
We present strongly convergent explicit and semi-implicit adaptive numerical schemes for systems of stiff stochastic differential equations (SDEs) where both the drift and diffusion are non-globally Lipschitz continuous. This stiffness may originate
Publikováno v:
Siam Journal on Numerical Analysis, 59, 4, pp. 1976-2003
Siam Journal on Numerical Analysis, 59, 1976-2003
Siam Journal on Numerical Analysis, 59, 1976-2003
The full discretization of the semilinear stochastic wave equation is considered. The discontinuous Galerkin finite element method is used in space and analyzed in a semigroup framework, and an exp...
Publikováno v:
Computational Geosciences. 24:1725-1746
One way to quantify the uncertainty in Bayesian inverse problems arising in the engineering domain is to generate samples from the posterior distribution using Markov chain Monte Carlo (MCMC) algorithms. The basic MCMC methods tend to explore the par
Autor:
Gabriel J. Lord, Utku Erdogan
Publikováno v:
Journal of Computational and Applied Mathematics, 399, 1-21
Journal of Computational and Applied Mathematics, 399, pp. 1-21
Journal of Computational and Applied Mathematics, 399, pp. 1-21
We introduce a tamed exponential time integrator which exploits linear terms in both the drift and diffusion for Stochastic Differential Equations (SDEs) with a one sided globally Lipschitz drift term. Strong convergence of the proposed scheme is pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::380322fd0e947560e53e51bfa41c1be2
http://arxiv.org/abs/2106.11425
http://arxiv.org/abs/2106.11425
Autor:
Antoine Tambue, Gabriel J. Lord
Publikováno v:
Applied Numerical Mathematics. 136:163-182
We consider the numerical approximation of the general second order semilinear parabolic stochastic partial differential equations (SPDEs) driven by additive space–time noise. Our goal is to build two numerical algorithms with strong convergence ra
Autor:
P. Acethorp, J. Kibler, Rosa Filgueira, Larry G. Mastin, Gabriel J. Lord, A. Tupper, Samantha Engwell
Publikováno v:
Bulletin of Volcanology, 83, 2, pp. 1-17
Bulletin of Volcanology, 83, 1-17
Bulletin of Volcanology, 83, 1-17
SLE was funded by the Global Geological Risk Research Platform of the British Geological Survey NC-ODA grant NE/R000069/1: Geoscience for Sustainable Futures. Understanding the location, intensity, and likely duration of volcanic hazards is key to re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6aeb1e2da461be7954d6e30f10737ce
Autor:
Lei Yang, Alison R Dun, Kirsty J Martin, Zhen Qiu, Andrew Dunn, Gabriel J Lord, Weiping Lu, Rory R Duncan, Colin Rickman
Publikováno v:
PLoS ONE, Vol 7, Iss 11, p e49514 (2012)
Intercellular communication is commonly mediated by the regulated fusion, or exocytosis, of vesicles with the cell surface. SNARE (soluble N-ethymaleimide sensitive factor attachment protein receptor) proteins are the catalytic core of the secretory
Externí odkaz:
https://doaj.org/article/b503554002024569a0e5bb6a1e9b48b1
Autor:
Gabriel J. Lord, Antoine Tambue
Publikováno v:
Applied Mathematics and Computation. 332:105-122
We consider the numerical approximation of a general second order semi–linear parabolic stochastic partial differential equation (SPDE) driven by additive space-time noise. We introduce a new modified scheme using linear functionals of the noise wi
Autor:
Gabriel J. Lord, Cónall Kelly
Publikováno v:
IMA Journal of Numerical Analysis. 38:1523-1549
We introduce a class of adaptive timestepping strategies for stochastic differential equations with non-Lipschitz drift coefficients. These strategies work by controlling potential unbounded growth in solutions of a numerical scheme due to the drift.