Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Gabriel Chartrand"'
Autor:
Akshat Gotra, Lojan Sivakumaran, Gabriel Chartrand, Kim-Nhien Vu, Franck Vandenbroucke-Menu, Claude Kauffmann, Samuel Kadoury, Benoît Gallix, Jacques A. de Guise, An Tang
Publikováno v:
Insights into Imaging, Vol 8, Iss 4, Pp 377-392 (2017)
Abstract Objectives Liver volumetry has emerged as an important tool in clinical practice. Liver volume is assessed primarily via organ segmentation of computed tomography (CT) and magnetic resonance imaging (MRI) images. The goal of this paper is to
Externí odkaz:
https://doaj.org/article/2ca2a441ace74dad861107bcde28ed51
Autor:
Francisco Perdigon Romero, Emmanuel Montagnon, Rikiya Yamashita, Gabriel Chartrand, Ian Pan, Samuel Kadoury, Phillip M. Cheng, An Tang, Alexandre Cadrin-Chênevert
Publikováno v:
RadioGraphics. 41:1427-1445
Deep learning is a class of machine learning methods that has been successful in computer vision. Unlike traditional machine learning methods that require hand-engineered feature extraction from input images, deep learning methods learn the image fea
Autor:
Charmin Bang, Gabriel Chartrand, Sophie Pawlowski, Ramon Emiliani, Daniel Markel, Houda Bahig, Alexandre Samak, Selvan Rajakesari, Jérémi Lavoie, Simon Ducharme, David Roberge
Publikováno v:
Neuro-Oncology. 24:vii50-vii51
Introduction Identifying, segmenting, measuring, and following multiple brain metastases treated with radiosurgery can be time consuming and error prone. Machine learning has shown promise for automated detection and segmentation. Recently, a U-Net i
Autor:
Gabriel Chartrand, Ramón D. Emiliani, Sophie A. Pawlowski, Daniel A. Markel, Houda Bahig, Alexandre Cengarle‐Samak, Selvan Rajakesari, Jeremi Lavoie, Simon Ducharme, David Roberge
Publikováno v:
Journal of magnetic resonance imaging : JMRIReferences. 56(6)
Detection of brain metastases (BM) and segmentation for treatment planning could be optimized with machine learning methods. Convolutional neural networks (CNNs) are promising, but their trade-offs between sensitivity and precision frequently lead to
Autor:
Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivanti, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yue, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
Publikováno v:
Med. Image Anal. 84:102680 (2022)
Medical Image Analysis, 84
Bilic, P, Christ, P, Li, H B, Vorontsov, E, Ben-Cohen, A, Kaissis, G, Szeskin, A, Jacobs, C, Mamani, G E H, Chartrand, G, Lohöfer, F, Holch, J W, Sommer, W, Hofmann, F, Hostettler, A, Lev-Cohain, N, Drozdzal, M, Amitai, M M, Vivanti, R, Sosna, J, Ezhov, I, Sekuboyina, A, Navarro, F, Kofler, F, Paetzold, J C, Shit, S, Hu, X, Lipková, J, Rempfler, M, Piraud, M, Kirschke, J, Wiestler, B, Zhang, Z, Hülsemeyer, C, Beetz, M, Ettlinger, F, Antonelli, M, Bae, W, Bellver, M, Bi, L, Chen, H, Chlebus, G, Dam, E B, Dou, Q, Fu, C-W, Georgescu, B, Giró-I-Nieto, X, Gruen, F, Han, X, Heng, P-A, Hesser, J, Moltz, J H, Igel, C, Isensee, F, Jäger, P, Jia, F, Kaluva, K C, Khened, M, Kim, I, Kim, J-H, Kim, S, Kohl, S, Konopczynski, T, Kori, A, Krishnamurthi, G, Li, F, Li, H, Li, J, Li, X, Lowengrub, J, Ma, J, Maier-Hein, K, Maninis, K-K, Meine, H, Merhof, D, Pai, A, Perslev, M, Petersen, J, Pont-Tuset, J, Qi, J, Qi, X, Rippel, O, Roth, K, Sarasua, I, Schenk, A, Shen, Z, Torres, J, Wachinger, C, Wang, C, Weninger, L, Wu, J, Xu, D, Yang, X, Yu, S C-H, Yuan, Y, Yue, M, Zhang, L, Cardoso, J, Bakas, S, Braren, R, Heinemann, V, Pal, C, Tang, A, Kadoury, S, Soler, L, van Ginneken, B, Greenspan, H, Joskowicz, L & Menze, B 2023, ' The Liver Tumor Segmentation Benchmark (LiTS) ', Medical Image Analysis, vol. 84, 102680 . https://doi.org/10.1016/j.media.2022.102680
Medical Image Analysis, 84
Bilic, P, Christ, P, Li, H B, Vorontsov, E, Ben-Cohen, A, Kaissis, G, Szeskin, A, Jacobs, C, Mamani, G E H, Chartrand, G, Lohöfer, F, Holch, J W, Sommer, W, Hofmann, F, Hostettler, A, Lev-Cohain, N, Drozdzal, M, Amitai, M M, Vivanti, R, Sosna, J, Ezhov, I, Sekuboyina, A, Navarro, F, Kofler, F, Paetzold, J C, Shit, S, Hu, X, Lipková, J, Rempfler, M, Piraud, M, Kirschke, J, Wiestler, B, Zhang, Z, Hülsemeyer, C, Beetz, M, Ettlinger, F, Antonelli, M, Bae, W, Bellver, M, Bi, L, Chen, H, Chlebus, G, Dam, E B, Dou, Q, Fu, C-W, Georgescu, B, Giró-I-Nieto, X, Gruen, F, Han, X, Heng, P-A, Hesser, J, Moltz, J H, Igel, C, Isensee, F, Jäger, P, Jia, F, Kaluva, K C, Khened, M, Kim, I, Kim, J-H, Kim, S, Kohl, S, Konopczynski, T, Kori, A, Krishnamurthi, G, Li, F, Li, H, Li, J, Li, X, Lowengrub, J, Ma, J, Maier-Hein, K, Maninis, K-K, Meine, H, Merhof, D, Pai, A, Perslev, M, Petersen, J, Pont-Tuset, J, Qi, J, Qi, X, Rippel, O, Roth, K, Sarasua, I, Schenk, A, Shen, Z, Torres, J, Wachinger, C, Wang, C, Weninger, L, Wu, J, Xu, D, Yang, X, Yu, S C-H, Yuan, Y, Yue, M, Zhang, L, Cardoso, J, Bakas, S, Braren, R, Heinemann, V, Pal, C, Tang, A, Kadoury, S, Soler, L, van Ginneken, B, Greenspan, H, Joskowicz, L & Menze, B 2023, ' The Liver Tumor Segmentation Benchmark (LiTS) ', Medical Image Analysis, vol. 84, 102680 . https://doi.org/10.1016/j.media.2022.102680
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical I
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e22b7afec9cac0b49d2cb615d2787280
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=67003
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=67003
Autor:
Chris Pal, Samuel Kadoury, Simon Turcotte, An Tang, Phillip M. Cheng, Eugene Vorontsov, Gabriel Chartrand, Michal Drozdzal
Publikováno v:
RadioGraphics. 37:2113-2131
Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapp
Publikováno v:
Journal of Magnetic Resonance Imaging. 43:1090-1099
Purpose To assess the agreement between published magnetic resonance imaging (MRI)-based regions of interest (ROI) sampling methods using liver mean proton density fat fraction (PDFF) as the reference standard. Materials and Methods This retrospectiv
Autor:
Chris Pal, Eugene Vorontsov, Samuel Kadoury, Gabriel Chartrand, Adriana Romero, Lisa Di Jorio, An Tang, Mahsa Shakeri, Yoshua Bengio, Michal Drozdzal
Publikováno v:
Medical image analysis. 44
In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particula
Autor:
Samuel Kadoury, Gabriel Chartrand, Akshat Gotra, Claude Kauffmann, Jacques A. de Guise, Lojan Sivakumaran, Franck Vandenbroucke-Menu, Kim-Nhien Vu, Benoit Gallix, An Tang
Publikováno v:
Insights into Imaging
Insights into Imaging, Vol 8, Iss 4, Pp 377-392 (2017)
Insights into Imaging, Vol 8, Iss 4, Pp 377-392 (2017)
Objectives Liver volumetry has emerged as an important tool in clinical practice. Liver volume is assessed primarily via organ segmentation of computed tomography (CT) and magnetic resonance imaging (MRI) images. The goal of this paper is to provide
Publikováno v:
IEEE transactions on bio-medical engineering. 64(9)
Objective: The purpose of this paper is to describe a semiautomated segmentation method for the liver and evaluate its performance on CT-scan and MR images. Methods: First, an approximate 3-D model of the liver is initialized from a few user-generate