Zobrazeno 1 - 10
of 206
pro vyhledávání: '"Gabeleh Moosa"'
Publikováno v:
Demonstratio Mathematica, Vol 56, Iss 1, Pp 283-293 (2023)
In this article, a class of cyclic (noncyclic) operators are defined on Banach spaces via concept of measure of noncompactness using some abstract functions. The best proximity point (pair) results are manifested for the said operators. The obtained
Externí odkaz:
https://doaj.org/article/fe4604ebb55c4946a319d9b55bf3e42a
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 450-469 (2021)
This work intends to treat the existence of mild solutions for the Hilfer fractional hybrid differential equation (HFHDE) with linear perturbation of first and second type in partially ordered Banach spaces. First, we establish the results concerning
Externí odkaz:
https://doaj.org/article/b85f045ce59b41ee82e9fc045f847ac2
Autor:
Gabeleh Moosa, Künzi Hans-Peter A.
Publikováno v:
Demonstratio Mathematica, Vol 53, Iss 1, Pp 38-43 (2020)
In this study, at first we prove that the existence of best proximity points for cyclic nonexpansive mappings is equivalent to the existence of best proximity pairs for noncyclic nonexpansive mappings in the setting of strictly convex Banach spaces
Externí odkaz:
https://doaj.org/article/65737cb5bedd4e52be388eaa36f67126
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 10-21 (2020)
Let A and B be nonempty subsets of a normed linear space X. A mapping T : A ∪ B → A ∪ B is said to be a noncyclic relatively nonexpansive mapping if T(A) ⊆ A, T(B) ⊆ B and ∥Tx − Ty∥ ≤ ∥x − y∥ for all (x, y) ∈ A × B. A best
Externí odkaz:
https://doaj.org/article/638d645157604735b4d8bd34a7d83a10
Autor:
Gabeleh Moosa, Markin Jack
Publikováno v:
Demonstratio Mathematica, Vol 51, Iss 1, Pp 171-181 (2018)
In this article, we consider the class of noncyclic Meir-Keeler contractions and study the existence and convergence of best proximity pairs for such mappings in the setting of complete CAT(0) spaces. We also discuss asymptotic pointwise noncyclic Me
Externí odkaz:
https://doaj.org/article/b98049a0494a4b20962c7e8d8d7c37c1
Autor:
Gabeleh Moosa
Publikováno v:
Demonstratio Mathematica, Vol 54, Iss 1, Pp 9-10 (2021)
The purpose of this short note is to present a correction of the proof of the main result given in the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings,” Demonstr
Externí odkaz:
https://doaj.org/article/d73908afb9da4602bb4e45f1eee6a86c
Publikováno v:
Open Mathematics, Vol 15, Iss 1, Pp 711-723 (2017)
In this article, we survey the existence, uniqueness and convergence of a common best proximity point for a cyclic pair of mappings, which is equivalent to study of a solution for a nonlinear programming problem in the setting of uniformly convex Ban
Externí odkaz:
https://doaj.org/article/5424f9bb22c445de8a8a282a3b838da9
Autor:
Gabeleh Moosa
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 22, Iss 3, Pp 45-58 (2014)
We consider, in the setting of convex metric spaces, a new class of Kannan type cyclic orbital contractions, and study the existence of its best proximity points. The same problem is then discussed for relatively Kannan nonexpansive mappings, by usin
Externí odkaz:
https://doaj.org/article/5f5da9fb4af64a219e19aeeb88e66f2e
Autor:
Gabeleh, Moosa1 (AUTHOR) gab.moo@gmail.com, Safari-Hafshejani, Akram2 (AUTHOR), Markin, Jack3 (AUTHOR), Khanna, Nikhil (AUTHOR) nikkhannak232@gmail.com
Publikováno v:
Journal of Function Spaces. 10/16/2024, Vol. 2024, p1-9. 9p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.