Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Gaëtan Hadjeres"'
Autor:
Gaëtan Hadjeres, Frank Nielsen
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030779566
SPIGL
SPIGL
We first introduce the class of strictly quasiconvex and strictly quasiconcave Jensen divergences which are asymmetric distances, and study some of their properties. We then define the strictly quasiconvex Bregman divergences as the limit case of sca
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cb5dd959283f50597f13ba6f80c007b1
https://doi.org/10.1007/978-3-030-77957-3_11
https://doi.org/10.1007/978-3-030-77957-3_11
Autor:
Gaëtan Hadjeres, Frank Nielsen
Publikováno v:
Neural Computing and Applications. 32:995-1005
Recurrent neural networks (RNNs) are now widely used on sequence generation tasks due to their ability to learn long-range dependencies and to generate sequences of arbitrary length. However, their left-to-right generation procedure only allows a lim
Autor:
Úna Monaghan, Bob L. Sturm, Oded Ben-Tal, François Pachet, Emmanuel Deruty, Gaëtan Hadjeres, Nick Collins, Dorien Herremans, Elaine Chew
Publikováno v:
Journal of New Music Research
Journal of New Music Research, Taylor & Francis (Routledge), 2019, 48 (1), pp.36-55. ⟨10.1080/09298215.2018.1515233⟩
Journal of New Music Research, Taylor & Francis (Routledge), 2019, 48 (1), pp.36-55. ⟨10.1080/09298215.2018.1515233⟩
International audience; Research applying machine learning to music modeling and generation typically proposes model architectures, training methods and datasets, and gauges system performance using quantitative measures like sequence likelihoods and
Publikováno v:
Deep Learning Techniques for Music Generation ISBN: 9783319701622
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::26d05bb3114084643a051c9ff1a2b727
https://doi.org/10.1007/978-3-319-70163-9_2
https://doi.org/10.1007/978-3-319-70163-9_2
Publikováno v:
Deep Learning Techniques for Music Generation ISBN: 9783319701622
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dc523623a9e72c231056bc6d32229985
https://doi.org/10.1007/978-3-319-70163-9_7
https://doi.org/10.1007/978-3-319-70163-9_7
Publikováno v:
Deep Learning Techniques for Music Generation ISBN: 9783319701622
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1cbcebc6ebbd651f5ec321aa8106b864
https://doi.org/10.1007/978-3-319-70163-9_8
https://doi.org/10.1007/978-3-319-70163-9_8
Publikováno v:
Deep Learning Techniques for Music Generation ISBN: 9783319701622
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b45a221f62d0af2ab69151f2278e486f
https://doi.org/10.1007/978-3-319-70163-9_1
https://doi.org/10.1007/978-3-319-70163-9_1
Publikováno v:
Deep Learning Techniques for Music Generation ISBN: 9783319701622
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::704ad42c2e7a109c02672f87de29c0e1
https://doi.org/10.1007/978-3-319-70163-9_4
https://doi.org/10.1007/978-3-319-70163-9_4
Publikováno v:
Deep Learning Techniques for Music Generation ISBN: 9783319701622
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::afe9f973bc543b1785b0a996ed8e13e6
https://doi.org/10.1007/978-3-319-70163-9_3
https://doi.org/10.1007/978-3-319-70163-9_3
Publikováno v:
Deep Learning Techniques for Music Generation ISBN: 9783319701622
We are now reaching the core of this book. This chapter will analyze in depth how to apply the architectures presented in Chapter 5 to learn and generate music. We will first start with a naive, straightforward strategy, using the basic prediction ta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::72a9ae1e2f1fb48276f86d8fa54a012e
https://doi.org/10.1007/978-3-319-70163-9_6
https://doi.org/10.1007/978-3-319-70163-9_6