Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Gaëtan Chenevier"'
Publikováno v:
Oberwolfach Reports. 18:2089-2156
Autor:
Frédéric Paulin, Gaëtan Chenevier
Publikováno v:
Publications Mathématiques de Besançon. :5-25
Let $A$ be a definite quaternion algebra over $\mathbb Q$, with discriminant $D_A$, and $O$ a maximal order of $A$. We show that the minimum of the positive definite hamiltonian binary forms over $O$ with discrimiminant $−1$ is $\sqrt{D_A}$. When t
Autor:
Olivier Taïbi, Gaëtan Chenevier
Publikováno v:
Publications mathématiques de l'IHÉS. 131:261-323
The aim of this paper is twofold. First, we introduce a new method for evaluating the multiplicity of a given discrete series representation in the space of level 1 automorphic forms of a split classical group $G$ over $\mathbf {Z}$ , and provide num
Autor:
Gaëtan Chenevier
Publikováno v:
Documenta Mathematica. 24:95-161
Autor:
Gaëtan Chenevier
Publikováno v:
Duke Math. J. 169, no. 6 (2020), 1039-1075
Duke Mathematical Journal
Duke Mathematical Journal, Duke University Press, 2020, 169 (6), pp.1039--1075
Duke Mathematical Journal
Duke Mathematical Journal, Duke University Press, 2020, 169 (6), pp.1039--1075
We show that for any integer $N$, there are only finitely many cuspidal algebraic automorphic representations of ${\rm GL}_n$ over $\mathbb{Q}$, with $n$ varying, whose conductor is $N$ and whose weights are in the interval $\{0,1,...,23\}$. More gen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47d77073eeff6714fe00dbaa269b7215
https://projecteuclid.org/euclid.dmj/1584151213
https://projecteuclid.org/euclid.dmj/1584151213
Autor:
Gaëtan Chenevier
Publikováno v:
Journal de Théorie des Nombres de Bordeaux
Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, In press
Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, In press
Let $L$ be an integral lattice in the Euclidean space $\mathbb{R}^n$ and $W$ an irreducible representation of the orthogonal group of $\mathbb{R}^n$. We give an implemented algorithm computing the dimension of the subspace of invariants in $W$ under
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27cdf987fb5cb5a303e5e568d16d8caf
http://arxiv.org/abs/2002.03707
http://arxiv.org/abs/2002.03707
Autor:
Gaëtan Chenevier, Jean Lannes
Publikováno v:
Automorphic Forms and Even Unimodular Lattices ISBN: 9783319958903
Most of this chapter may be read independently. We first recall known properties of the Siegel theta series of even unimodular lattices in rank 16 (Witt, Igusa, Kneser) and 24 (Erokhin, Borcherds, Nebe-Venkov…). Then we give two proofs of Theorem A
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::67c5467e16a0a3696ce1d4bf82b4ad04
https://doi.org/10.1007/978-3-319-95891-0_5
https://doi.org/10.1007/978-3-319-95891-0_5
Autor:
Gaëtan Chenevier, Jean Lannes
Publikováno v:
Automorphic Forms and Even Unimodular Lattices ISBN: 9783319958903
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0e827868eb33797c9b9142cf1e97f34b
https://doi.org/10.1007/978-3-319-95891-0_1
https://doi.org/10.1007/978-3-319-95891-0_1
Autor:
Jean Lannes, Gaëtan Chenevier
Publikováno v:
Automorphic Forms and Even Unimodular Lattices ISBN: 9783319958903
In this chapter, we give many examples of specific cases of the Arthur-Langlands conjecture concerning automorphic forms for SOn or Siegel modular forms. They rely on concrete constructions of automorphic forms which are either classical (using theta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::85b38f40d057b2d1b7cf2894b17bdae5
https://doi.org/10.1007/978-3-319-95891-0_7
https://doi.org/10.1007/978-3-319-95891-0_7
Autor:
Gaëtan Chenevier, Jean Lannes
Publikováno v:
Automorphic Forms and Even Unimodular Lattices ISBN: 9783319958903
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4aee294fe9fa82c5a3b1346eed6e6861
https://doi.org/10.1007/978-3-319-95891-0_10
https://doi.org/10.1007/978-3-319-95891-0_10