Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Gaël Cousin"'
Autor:
Gaël Cousin, Delphine Moussard
Publikováno v:
International Mathematics Research Notices. 2018:3388-3442
Autor:
Gaël Cousin
Publikováno v:
Comptes Rendus Mathematique. 353:155-159
We discuss two results about projective representations of fundamental groups of quasiprojective varieties. The first is a realization result which, under a nonresonance assumption, allows to realize such representations as monodromy representations
We propose a study of the foliations of the projective plane induced by simple derivations of the polynomial ring in two indeterminates over the complex field. These correspond to foliations which have no invariant algebraic curve nor singularities i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0099d3c0771ede601e4395edd3f75fbe
http://arxiv.org/abs/1701.00790
http://arxiv.org/abs/1701.00790
Autor:
Gaël Cousin, Viktoria Heu
The germ of the universal isomonodromic deformation of a logarithmic connection on a stable n-pointed genus g curve always exists in the analytic category. The first part of this paper investigates under which conditions it is the analytic germificat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f9c4c6e02d3d27f18d466999665bce6
http://arxiv.org/abs/1612.05779
http://arxiv.org/abs/1612.05779
We prove that foliations on the projective plane admitting a Liouvillian first integral but not admitting a rational first integral always have invariant algebraic curves of degree bounded by a function of the degree of the foliation. We establish, f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66d76269319fe2ace65967e39670800a
Autor:
Gaël Cousin
Publikováno v:
Mathematische Annalen
Mathematische Annalen, Springer Verlag, 2017, 367 (3-4), pp.965-1005. ⟨10.1007/s00208-016-1397-y⟩
Mathematische Annalen, Springer Verlag, 2017, 367 (3-4), pp.965-1005. ⟨10.1007/s00208-016-1397-y⟩
We study algebraic isomonodromic deformations of flat logarithmic connections on the Riemann sphere with $n\geq 4$ poles, for arbitrary rank. We introduce a natural property of algebraizability for the germ of universal deformation of such a connecti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a893b7f84c565c7dbfed831bd2a23ba9
http://arxiv.org/abs/1501.02753
http://arxiv.org/abs/1501.02753
Autor:
Gaël Cousin
Publikováno v:
Annales de l'Institut Fourier
Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. ⟨10.5802/aif.2863⟩
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. 〈10.5802/aif.2863〉
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. ⟨10.5802/aif.2863⟩
Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. ⟨10.5802/aif.2863⟩
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. 〈10.5802/aif.2863〉
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (2), pp.699-737. ⟨10.5802/aif.2863⟩
One can easily give examples of rank 2 flat connections over $\mathbb{P}^2$ by rational pull-back of connections over $\mathbb{P}^1$. We give an example of a connection that can not occur in this way; this example is constructed from an algebraic sol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc8b309839e1225663965e1a19a8241e
https://hal.science/hal-00659358v3/document
https://hal.science/hal-00659358v3/document
Autor:
Gaël Cousin, Jorge Vitório Pereira
We describe the structure of singular transversely affine foliations of codimension one on projective manifolds X with zero first Betti number. Our result can be rephrased as a theorem on rank two reducible flat meromorphic connections.
Comment:
Comment:
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ec375f19d7ece31adefedc146d700ab
http://arxiv.org/abs/1305.2175
http://arxiv.org/abs/1305.2175