Zobrazeno 1 - 10
of 93
pro vyhledávání: '"GURJAR, R. V."'
Autor:
Gurjar, R. V., Maharana, Alok
We prove that several invariants of a possibly singular complex affine or projective variety of degree $d$ in the affine space $\mathbb{A}^{n}$, or $\mathbb{P}^n$, are bounded by a function of $d$ alone, provided $b_{1}=0$ for a resolution of singula
Externí odkaz:
http://arxiv.org/abs/2303.01045
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Contemporary Mathematics, Vol. 738, 2019,33-56
In this exposition of the equality and inequality of Minkowski for multiplicity of ideals, we provide simple algebraic and geometric proofs. Connections with mixed multiplicities of ideals are explained.
Comment: 28 pages
Comment: 28 pages
Externí odkaz:
http://arxiv.org/abs/1807.06309
We generalize results by Wakabayashi and Orevkov about rational cuspidal curves on the projective plane to that on $\mathbb{Q}$-homology projective planes. It turns out that the result is exactly the same as the projective plane case under suitable a
Externí odkaz:
http://arxiv.org/abs/1603.00125
Autor:
Gurjar, R. V., Kolte, Sagar
We will prove that given a genus-2 fibration $f: X \rightarrow C$ on a smooth projective surface $X$ such that $b_1(X)=b_1(C)+2$, the fundamental group of $X$ is almost isomorphic to $\pi_1(C) \times \pi_1(E)$, where $E$ is an elliptic curve. We will
Externí odkaz:
http://arxiv.org/abs/1512.08839
Affine varieties of dimension greater than two can be explored their structures with the help of fibrations by the affine line or plane and quotient morphisms by $\mathbb{G}_a$-actions. We consider $\mathbb{G}_a$-actions on affine threefolds and disc
Externí odkaz:
http://arxiv.org/abs/1502.01849
We consider log deformations of affine surfaces with fibrations by the affine lines. Such a fibration is of affine type (resp. of complete type) if the base curve of the fibration is an affine curve (resp. a complete curve). The case of affine type i
Externí odkaz:
http://arxiv.org/abs/1403.6930
We consider the Zariski-Lipman Conjecture on free module of derivations for algebraic surfaces. Using the theory of non-complete algebraic surfaces, and some basic results about ruled surfaces, we will prove the conjecture for several classes of affi
Externí odkaz:
http://arxiv.org/abs/1403.5613
The affine line minus one point is the underlying space of the algebraic torus of dimension one. However the fibration of an affine algebraic threefold by the affine line minus one point is not always the quotient morphism of the threefold by the alg
Externí odkaz:
http://arxiv.org/abs/1211.1757
Inspired by a result of D. Cerveau on surjective derivations on a polynomial ring in two variables over a complex number field C, we consider a surjective derivation defined on an affine domain over C of dimension one or two. Though our proofs are mo
Externí odkaz:
http://arxiv.org/abs/1211.0744