Zobrazeno 1 - 10
of 4 665
pro vyhledávání: '"GRAHAM, Mark"'
Autor:
O'Neill, Jacki, Marivate, Vukosi, Glover, Barbara, Karanu, Winnie, Tadesse, Girmaw Abebe, Gyekye, Akua, Makena, Anne, Rosslyn-Smith, Wesley, Grollnek, Matthew, Wayua, Charity, Baguma, Rehema, Maduke, Angel, Spencer, Sarah, Kandie, Daniel, Maari, Dennis Ndege, Mutangana, Natasha, Axmed, Maxamed, Kamau, Nyambura, Adamu, Muhammad, Swaniker, Frank, Gatuguti, Brian, Donner, Jonathan, Graham, Mark, Mumo, Janet, Mbindyo, Caroline, N'Guessan, Charlette, Githinji, Irene, Makhafola, Lesego, Kruger, Sean, Etyang, Olivia, Onando, Mulang, Sevilla, Joe, Sambuli, Nanjira, Mbaya, Martin, Breloff, Paul, Anapey, Gideon M., Mogaleemang, Tebogo L., Nghonyama, Tiyani, Wanyoike, Muthoni, Mbuli, Bhekani, Nderu, Lawrence, Nyabero, Wambui, Alam, Uzma, Olaleye, Kayode, Njenga, Caroline, Sellen, Abigail, Kairo, David, Chabikwa, Rutendo, Abdulhamid, Najeeb G., Kubasu, Ketry, Okolo, Chinasa T., Akpo, Eugenia, Budu, Joel, Karambal, Issa, Berkoh, Joseph, Wasswa, William, Njagwi, Muchai, Burnet, Rob, Ochanda, Loise, de Bod, Hanlie, Ankrah, Elizabeth, Kinyunyu, Selemani, Kariuki, Mutembei, Kiyimba, Kizito, Eleshin, Farida, Madeje, Lillian Secelela, Muraga, Catherine, Nganga, Ida, Gichoya, Judy, Maina, Tabbz, Maina, Samuel, Mercy, Muchai, Ochieng, Millicent, Nyairo, Stephanie
This white paper is the output of a multidisciplinary workshop in Nairobi (Nov 2023). Led by a cross-organisational team including Microsoft Research, NEPAD, Lelapa AI, and University of Oxford. The workshop brought together diverse thought-leaders f
Externí odkaz:
http://arxiv.org/abs/2411.10091
Autor:
Fernandez, Virginia, Pinaya, Walter Hugo Lopez, Borges, Pedro, Graham, Mark S., Vercauteren, Tom, Cardoso, M. Jorge
Generative modelling and synthetic data can be a surrogate for real medical imaging datasets, whose scarcity and difficulty to share can be a nuisance when delivering accurate deep learning models for healthcare applications. In recent years, there h
Externí odkaz:
http://arxiv.org/abs/2311.04552
Autor:
Pinaya, Walter H. L., Graham, Mark S., Kerfoot, Eric, Tudosiu, Petru-Daniel, Dafflon, Jessica, Fernandez, Virginia, Sanchez, Pedro, Wolleb, Julia, da Costa, Pedro F., Patel, Ashay, Chung, Hyungjin, Zhao, Can, Peng, Wei, Liu, Zelong, Mei, Xueyan, Lucena, Oeslle, Ye, Jong Chul, Tsaftaris, Sotirios A., Dogra, Prerna, Feng, Andrew, Modat, Marc, Nachev, Parashkev, Ourselin, Sebastien, Cardoso, M. Jorge
Recent advances in generative AI have brought incredible breakthroughs in several areas, including medical imaging. These generative models have tremendous potential not only to help safely share medical data via synthetic datasets but also to perfor
Externí odkaz:
http://arxiv.org/abs/2307.15208
Autor:
Graham, Mark S., Pinaya, Walter Hugo Lopez, Wright, Paul, Tudosiu, Petru-Daniel, Mah, Yee H., Teo, James T., Jäger, H. Rolf, Werring, David, Nachev, Parashkev, Ourselin, Sebastien, Cardoso, M. Jorge
Methods for out-of-distribution (OOD) detection that scale to 3D data are crucial components of any real-world clinical deep learning system. Classic denoising diffusion probabilistic models (DDPMs) have been recently proposed as a robust way to perf
Externí odkaz:
http://arxiv.org/abs/2307.03777