Zobrazeno 1 - 10
of 32
pro vyhledávání: '"GOMEA"'
Autor:
Torsten Berning, Dmitri Bessarabov
Publikováno v:
Membranes, Vol 13, Iss 7, p 614 (2023)
We are proposing a conceptual membrane electrode assembly (MEA) of a proton exchange membrane water electrolyzer that includes a layer of graphene oxide (GO) at the cathode side. This GO layer primarily reinforces the MEA to allow operation at a high
Externí odkaz:
https://doaj.org/article/097ac58fa2a04613b207f4e5d6677d7b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
CEC
The Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA) has previously been successfully used to achieve highly scalable optimization of various real-world problems in a gray-box optimization setting. Deformable Image Registration
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78ef23a958e3a82b9b9fcd3e2fae9a84
https://doi.org/10.1109/cec45853.2021.9504840
https://doi.org/10.1109/cec45853.2021.9504840
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Swarm and Evolutionary Computation, 53:100640. Elsevier BV
SWARM AND EVOLUTIONARY COMPUTATION, 53. ELSEVIER
Swarm and Evolutionary Computation, 53
SWARM AND EVOLUTIONARY COMPUTATION, 53. ELSEVIER
Swarm and Evolutionary Computation, 53
Feature construction can substantially improve the accuracy of Machine Learning (ML) algorithms. Genetic Programming (GP) has been proven to be effective at this task by evolving non-linear combinations of input features. GP additionally has the pote
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bce2a4d2f3c6e72eb23f1cfdfd61dacd
https://doi.org/10.1016/j.swevo.2019.100640
https://doi.org/10.1016/j.swevo.2019.100640
Publikováno v:
GECCO
GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 603-611
STARTPAGE=603;ENDPAGE=611;TITLE=GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference
GECCO 2020: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
GECCO 2020
GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 603-611
STARTPAGE=603;ENDPAGE=611;TITLE=GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference
GECCO 2020: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
GECCO 2020
Often, real-world problems are of the gray-box type. It has been shown that the Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA) is in principle capable of exploiting such a Gray-Box Optimization (GBO) setting using linkage mode
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91a65de9674a66bd087f374e1703d006
https://doi.org/10.1145/3377930.3390225
https://doi.org/10.1145/3377930.3390225
Publikováno v:
GECCO
GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference, 753-761
STARTPAGE=753;ENDPAGE=761;TITLE=GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference
GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference, 753-761
STARTPAGE=753;ENDPAGE=761;TITLE=GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference
We introduce a novel surrogate-assisted Genetic Algorithm (GA) for expensive optimization of problems with discrete categorical variables. Specifically, we leverage the strengths of the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), a state
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55de33ddd6129a166eb055839f12128b
https://ir.cwi.nl/pub/28897
https://ir.cwi.nl/pub/28897
Publikováno v:
Evolutionary Computation, 29(2), 211-237. MIT PRESS
Evolutionary Computation, 29(2), 211-237
Evolutionary Computation, 29(2), 211-237
The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a model-based EA framework that has been shown to perform well in several domains, including Genetic Programming (GP). Differently from traditional EAs where variation acts blindly, GOMEA
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.