Zobrazeno 1 - 10
of 137
pro vyhledávání: '"GILBERT, ANDREW D."'
Autor:
Gilbert, Andrew D., Vanneste, Jacques
Lagrangian averaging theories, most notably the Generalised Lagrangian Mean (GLM) theory of Andrews & McIntyre (1978), have been primarily developed in Euclidean space and Cartesian coordinates. We re-interpret these theories using a geometric, coord
Externí odkaz:
http://arxiv.org/abs/2405.04394
Zonal flows are mean flows in the east-west direction, which are ubiquitous on planets, and can be formed through 'zonostrophic instability': within turbulence or random waves, a weak large-scale zonal flow can grow exponentially to become prominent.
Externí odkaz:
http://arxiv.org/abs/2312.08905
This paper concerns the stability of Kolmogorov flow u = (0, sin x) in the infinite (x,y)-plane. A mean magnetic field of strength B0 is introduced and the MHD linear stability problem studied for modes with wave-number k in the y-direction, and Bloc
Externí odkaz:
http://arxiv.org/abs/2303.05212
This paper studies the instability of two-dimensional magnetohydrodynamic (MHD) systems on a sphere using analytical methods. The underlying flow consists of a zonal differential rotation and a toroidal magnetic field is present. Semicircle rules tha
Externí odkaz:
http://arxiv.org/abs/2209.07349
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gilbert, Andrew D., Vanneste, Jacques
We develop a geometric formulation of fluid dynamics, valid on arbitrary Riemannian manifolds, that regards the momentum-flux and stress tensors as 1-form valued 2-forms, and their divergence as a covariant exterior derivative. We review the necessar
Externí odkaz:
http://arxiv.org/abs/1911.06613
Autor:
Gilbert, Andrew D., Vanneste, Jacques
This paper considers magnetohydrodynamics (MHD) and some of its applications from the perspective of differential geometry, considering the dynamics of an ideal fluid flow and magnetic field on a general three-dimensional manifold, equipped with a me
Externí odkaz:
http://arxiv.org/abs/1911.06592
Autor:
GILBERT, ANDREW D., JACQUES, CHRISTOPHER N., LANCASTER, JOSEPH D., YETTER, AARON P., HAGY, HEATH M.
Publikováno v:
Wildlife Society Bulletin (2011-), 2021 Mar 01. 45(1), 6-15.
Externí odkaz:
https://www.jstor.org/stable/27014847
Autor:
Childress, Stephen, Gilbert, Andrew D.
A theory of an eroding "hairpin" vortex dipole structure in three dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The hairpin is here similarly proposed as a model to produce large "self-stretchi
Externí odkaz:
http://arxiv.org/abs/1612.07709
Autor:
GILBERT, ANDREW D., JACQUES, CHRISTOPHER N., LANCASTER, JOSEPH D., YETTER, AARON P., HAGY, HEATH M.
Publikováno v:
The Journal of Wildlife Management, 2020 Aug 01. 84(6), 1063-1071.
Externí odkaz:
https://www.jstor.org/stable/26935326