Zobrazeno 1 - 6
of 6
pro vyhledávání: '"GIANMARCO OTTAVI"'
Autor:
Angelo Garofalo, Francesco Conti, DAVIDE ROSSI, Giuseppe Tagliavini, GIANMARCO OTTAVI, LUCA BENINI, Alfio Di Mauro
Publikováno v:
IEEE Transactions on Circuits and Systems I: Regular Papers, 70 (6)
Computationally intensive algorithms such as Deep Neural Networks (DNNs) are becoming killer applications for edge devices. Porting heavily data-parallel algorithms on resource-constrained and battery-powered devices poses several challenges related
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0eb8a94b94aed3ec986823667594738
https://hdl.handle.net/20.500.11850/606661
https://hdl.handle.net/20.500.11850/606661
Autor:
Angelo Garofalo, Geethan Karunaratne, Francesco Conti, DAVIDE ROSSI, Irem Boybat, GIANMARCO OTTAVI, LUCA BENINI
Publikováno v:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 12:422-435
Deployment of modern TinyML tasks on small battery-constrained IoT devices requires high computational energy efficiency. Analog In-Memory Computing (IMC) using non-volatile memory (NVM) promises major efficiency improvements in deep neural network (
Autor:
Davide Rossi, Stefan Mach, Luca Benini, Simone Benatti, Angelo Garofalo, Fabio Montagna, Gianmarco Ottavi, Giuseppe Tagliavini
Publikováno v:
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems, 33 (5)
IEEE Transactions on Parallel and Distributed Systems, 33 (5)
Recent applications in low-power (1-20 mW) near-sensor computing require the adoption of floating-point arithmetic to reconcile high precision results with a wide dynamic range. In this article, we propose a low-power multi-core computing cluster tha
Autor:
Irem Boybat, Gianmarco Ottavi, Francesco Conti, Geethan Karunaratne, Davide Rossi, Luca Benini
Publikováno v:
2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)
In-Memory Acceleration (IMA) promises major efficiency improvements in deep neural network (DNN) inference, but challenges remain in the integration of IMA within a digital system. We propose a heterogeneous architecture coupling 8 RISC-V cores with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1f806c1211969fba13506069b01d9649
http://arxiv.org/abs/2109.01404
http://arxiv.org/abs/2109.01404
Autor:
Alfio Di Mauro, Luca Benini, Gianmarco Ottavi, Francesco Conti, Davide Rossi, Angelo Garofalo, Giuseppe Tagliavini
Publikováno v:
ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference (ESSCIRC)
ESSCIRC
ESSCIRC
IoT end-nodes require extreme performance and energy efficiency coupled with high flexibility to deal with the increasing computational requirements and variety of modern near-sensor data analytics applications. Low-Bitwidth and Mixed-Precision arith
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::828bfac5c1ae1ded8371b5754db5305d
http://hdl.handle.net/11585/847035
http://hdl.handle.net/11585/847035
Autor:
Francesco Conti, Davide Rossi, Giuseppe Tagliavini, Gianmarco Ottavi, Angelo Garofalo, Luca Benini
Publikováno v:
2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
ISVLSI
ISVLSI
Low bit-width Quantized Neural Networks (QNNs) enable deployment of complex machine learning models on constrained devices such as microcontrollers (MCUs) by reducing their memory footprint. Fine-grained asymmetric quantization (i.e., different bit-w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f3debc3ab43adc81e6eb8acadbe181b